Loading…

Processing of TiPd shape memory alloy reinforced Ti-matrix composites and their mechanical properties

Ti and Ti-2Cu matrix composites reinforced by TiPd-based shape memory alloys (SMAs) were fabricated by sheath rolling of Ti or Ti-2Cu plates with TiPd fiber. Fibers of three TiPd SMAs were used as reinforcements. The Young's modulus of TiPd fiber increased with increasing temperature above aust...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2001-10, Vol.316 (1), p.93-101
Main Authors: Mizuuchi, K, Inoue, K, Yamauchi, K, Enami, K, Itami, M, Okanda, Y
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ti and Ti-2Cu matrix composites reinforced by TiPd-based shape memory alloys (SMAs) were fabricated by sheath rolling of Ti or Ti-2Cu plates with TiPd fiber. Fibers of three TiPd SMAs were used as reinforcements. The Young's modulus of TiPd fiber increased with increasing temperature above austenite start temperature, A s. Good bonding between the fiber and matrix was obtained by heat treatment at 1123 K for 3.6 ks following sheath rolling at the same temperature. A multi-layered reaction region was formed in the vicinity of the interface between Ti or Ti-2Cu matrix and TiPd-based SMA fiber. Tensile tests were performed at various temperatures for Ti-2Cu matrix composites containing Ti–22Pd–27Ni–1W and Ti/Ti–25Pd–24Ni–1W fiber. It was found that the 0.5% offset stress of these composites increased with increasing temperature. This stress increase is mainly caused by residual compressive stresses generated in association with shape memory effects of the TiPd-based SMAs. Surface observations of fractured specimens showed that interfacial layers were fractured in a ductile fracture mode.
ISSN:0921-5093
1873-4936
DOI:10.1016/S0921-5093(01)01237-0