Loading…
Coverage estimation methods for stratified fault-injection
This paper addresses the problem of estimating fault tolerance coverage through statistical processing of observations collected in fault-injection experiments. In an earlier paper, venous estimators based on simple sampling in the complete fault/activity input space and stratified sampling in a par...
Saved in:
Published in: | IEEE transactions on computers 1999-07, Vol.48 (7), p.707-723 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper addresses the problem of estimating fault tolerance coverage through statistical processing of observations collected in fault-injection experiments. In an earlier paper, venous estimators based on simple sampling in the complete fault/activity input space and stratified sampling in a partitioned space were studied; frequentist confidence limits were derived based on a normal approximation. In this paper, the validity of this approximation is analyzed. The theory of confidence regions is introduced to estimate coverage without approximation when stratification is used. Three statistics are considered for defining confidence regions. It is shown that one-a vectorial statistic-is often more conservative than the other two. However, only the vectorial statistic is computationally tractable. We then consider Bayesian estimation methods for stratified sampling. Two methods are presented to obtain an approximation of the posterior distribution of the coverage by calculating its moments. The moments are then used to identify the type of the distribution in the Pearson distribution system, to estimate its parameters, and to obtain the coverage confidence limit. Three hypothetical example systems are used to compare the validity and the conservatism of the frequentist and Bayesian estimations. |
---|---|
ISSN: | 0018-9340 1557-9956 |
DOI: | 10.1109/12.780878 |