Loading…
Effect of in situ material properties on fatigue damage modes in titanium matrix composites
Titanium matrix composites (TMC) and their behavior under mechanical fatigue loads was the subject of this research. The primary objective was to explain fatigue damage modes in center-notched TMC specimens. Two modes of damage have been observed in continuously reinforced, zero-degree unidirectiona...
Saved in:
Published in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 1999-02, Vol.30 (2), p.255-266 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Titanium matrix composites (TMC) and their behavior under mechanical fatigue loads was the subject of this research. The primary objective was to explain fatigue damage modes in center-notched TMC specimens. Two modes of damage have been observed in continuously reinforced, zero-degree unidirectional, SCS-6/Ti-15V-3Cr-3Al-3Sn (SCS-6/Ti-15-3) laminates. The fatigue specimens were destructively analyzed using optical microscopy to detrmine where cracks originated and how they grew throughout the specimen. A micromechanical model was developed to explain the fatigue crack patterns observed in the interface region surrounding the fibers of the woven and acrylic-binder TMC material systems. A two-dimensional (2-D) model of a longitudinal lamina with a center hole was used to obtain a set of displacement boundary conditions for an element near the notch, yet within the net section where the spiral crack patterns were observed. These boundary conditions were then used on a three-dimensional (3-D) unit cell model of the fiber, matrix, and interface. |
---|---|
ISSN: | 1073-5623 1543-1940 |
DOI: | 10.1007/s11661-999-0314-3 |