Loading…

Semianalytical finite element analysis of active constrained layer damping in cylindrical shells of revolution

Active constrained layer damping in cylindrical shells of revolution are studied. A three noded, isoparametric, multilayered, semianalytical finite element is developed and used. A layerwise theory is assumed for the thickness variation of the displacements and electric potential. The electrodes on...

Full description

Saved in:
Bibliographic Details
Published in:Computers & structures 2001-04, Vol.79 (11), p.1131-1145
Main Authors: Saravanan, C., Ganesan, N., Ramamurti, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Active constrained layer damping in cylindrical shells of revolution are studied. A three noded, isoparametric, multilayered, semianalytical finite element is developed and used. A layerwise theory is assumed for the thickness variation of the displacements and electric potential. The electrodes on the sensors/actuators are spatially shaped to reduce spillover between circumferential modes. The effect of axial and circumferential mode numbers, feedback factor, length to radius ratio, radius to thickness ratio of the shell, percentage area of the shell covered with collocated piezoelectric sensors/actuators and the axial location of the collocated sensors/actuators, on the damping ratio of the cylindrical shells of revolution are studied. A comparison is also made between the active constrained layer damping and the conventional passive constrained layer damping treatments for the class of shells considered.
ISSN:0045-7949
1879-2243
DOI:10.1016/S0045-7949(00)00186-3