Loading…
On-chip low-loss all-optical MoSe2 modulator
Monolayer transition metal dichalcogenides (TMDCs), like MoS2, MoSe2, WS2, and WSe2, feature direct bandgaps, strong spin–orbit coupling, and exciton–polariton interactions at the atomic scale, which could be harnessed for efficient light emission, valleytronics, and polaritonic lasing, respectively...
Saved in:
Published in: | Optics letters 2022-08, Vol.47 (15), p.3640-3643 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Monolayer transition metal dichalcogenides (TMDCs), like MoS2, MoSe2, WS2, and WSe2, feature direct bandgaps, strong spin–orbit coupling, and exciton–polariton interactions at the atomic scale, which could be harnessed for efficient light emission, valleytronics, and polaritonic lasing, respectively. Nevertheless, to build next-generation photonic devices that make use of these features, it is first essential to model the all-optical control mechanisms in TMDCs. Herein, a simple model is proposed to quantify the performance of a 35-ðoem-long Si3N4 waveguide-integrated all-optical MoSe2 modulator. Using this model, a switching energy of 14.6 pJ is obtained for a transverse-magnetic (TM) and transverse-electric (TE) polarized pump signals at λ = 480 nm. Moreover, maximal extinction ratios of 20.6 dB and 20.1 dB are achieved for a TM and TE polarized probe signal, respectively, at λ = 500 nm with an ultra-low insertion loss of |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.465171 |