Loading…
Periodic One-Dimensional Single-Atom Arrays
The orderly assembly of single atoms into highly periodic aggregates at the nanoscale is an intriguing but challenging process of high-precision atomic manufacturing. Here, we discover that an in-plane film surface shrinkage can induce molecular self-assembly to arrange single atoms with unconventio...
Saved in:
Published in: | Journal of the American Chemical Society 2022-09, Vol.144 (35), p.15999-16005 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The orderly assembly of single atoms into highly periodic aggregates at the nanoscale is an intriguing but challenging process of high-precision atomic manufacturing. Here, we discover that an in-plane film surface shrinkage can induce molecular self-assembly to arrange single atoms with unconventional distribution, contributing them to periodic one-dimensional segregation on carbon stripes (one-dimensional single-atom arrays (SAA)). This originates from the fact that metal phthalocyanine (MPc) molecules gradually aggregate and melt to form a film under a thermal drive and the help of sodium chloride templates, accompanied by surface shrinkage, self-assembly, and deep carbonization. At the nanoscale, these periodic parallel arrays are formed due to MPc molecular interactions by π–π stacking. At the atomic scale, the single atoms are stabilized by the vertical phthalocyanine-derived multilayer graphene. This can significantly modify the electronic structure of the single-atom sites on the outermost graphene (e.g., Fe-based SAA), thus optimizing the adsorption energy of oxygen intermediates and resulting in a superior oxygen reduction reaction (ORR) performance concerning disordered single atoms. Our findings provide a general route for orderly single-atom manufacturing (e.g., Fe, Co, and Cu) and an understanding of the relationship between orderly allocation and catalytic performance. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.2c05572 |