Loading…
Concepts for Integrating Plastic Anisotropy into Metal Forming Simulations
Modern metal forming and crash simulations are usually based on the finite element method. Aims of such simulations are typically the prediction of the material shape, failure, and mechanical properties during deformation. Further goals lie in the computer assisted lay‐out of manufacturing tools use...
Saved in:
Published in: | Advanced engineering materials 2002-04, Vol.4 (4), p.169-180 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Modern metal forming and crash simulations are usually based on the finite element method. Aims of such simulations are typically the prediction of the material shape, failure, and mechanical properties during deformation. Further goals lie in the computer assisted lay‐out of manufacturing tools used for intricate processing steps. Any such simulation requires that the material under investigation is specified in terms of its respective constitutive behavior. Modern finite element simulations typically use three sets of material input data, covering hardening, forming limits, and anisotropy. The current article is about the latter aspect. It reviews different empirical and physically based concepts for the integration of the elastic‐plastic anisotropy into metal forming finite element simulations. Particular pronunciation is placed on the discussion of the crystallographic anisotropy of polycrystalline material rather than on aspects associated with topological or morphological microstructure anisotropy. The reviewed anisotropy concepts are empirical yield surface approximations, yield surface formulations based on crystallographic homogenization theory, combinations of finite element and homogenization approaches, the crystal plasticity finite element method, and the recently introduced texture component crystal plasticity finite element method. The paper presents the basic physical approaches behind the different methods and discusses engineering aspects such as scalability, flexibility, and texture update in the course of a forming simulation.
Modern metal forming and crash simulations are usually based on the finite element method. Any such simulation requires that the material under investigation is specified in terms of its respective constitutive behavior. Modern finite element simulations typically use three sets of material input data, covering hardening, forming limits, and anisotropy. The current article reviews different empirical and physically based concepts for the integration of the elastic‐plastic anisotropy into metal forming finite element simulations. The main focus is on the discussion of the crystallographic anisotropy of polycrystalline material. The paper presents the basic physical approaches behind the different methods and discusses engineering aspects such as scalability, flexibility, and texture update in the course of a forming simulation. |
---|---|
ISSN: | 1438-1656 1527-2648 |
DOI: | 10.1002/1527-2648(200204)4:4<169::AID-ADEM169>3.0.CO;2-G |