Loading…

Identification of genetic loci shared between Alzheimer’s disease and hypertension

Alzheimer’s disease (AD) and high blood pressure (BP) are prevalent age-related diseases with significant unexplained heritability. A thorough analysis of genetic pleiotropy between AD and BP will lay a foundation for the study of the associated molecular mechanisms, leading to a better understandin...

Full description

Saved in:
Bibliographic Details
Published in:Molecular genetics and genomics : MGG 2022-11, Vol.297 (6), p.1661-1670
Main Authors: Sullivan, Megan, Deng, Hong-Wen, Greenbaum, Jonathan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Alzheimer’s disease (AD) and high blood pressure (BP) are prevalent age-related diseases with significant unexplained heritability. A thorough analysis of genetic pleiotropy between AD and BP will lay a foundation for the study of the associated molecular mechanisms, leading to a better understanding of the development of each phenotype. We used the conditional false discovery rate (cFDR) method to identify novel genetic loci associated with both AD and BP. The cFDR approach improves the effective sample size for association testing by combining GWAS summary statistics for correlated phenotypes. We identified 50 pleiotropic SNPs for AD and BP, 7 of which are novel and have not previously been reported to be associated with either AD or BP. The novel SNPs located at STK3 are particularly noteworthy, as this gene may influence AD risk via the Hippo signaling network, which regulates cell death. Bayesian colocalization analysis demonstrated that although AD and BP are associated, they do not appear to share the same causal variants. We further performed two sample Mendelian randomization analysis, but could not detect a causal effect of BP on AD. Despite the inability to establish a causal link between AD and BP, our findings report some potential novel pleiotropic loci that may influence disease susceptibility. In summary, we identified 7 SNPs that annotate to 4 novel genes which have not previously been reported to be associated with AD nor with BP and discuss the possible role of one of these genes, STK3 in the Hippo signaling network.
ISSN:1617-4615
1617-4623
DOI:10.1007/s00438-022-01949-4