Loading…

Efficient solution of population balance equations with discontinuities by finite elements

Two refinements of Galerkin's method on finite elements were evaluated for the solution of population balance equations for precipitation systems. The traditional drawbacks of this approach have been the time required for computation of the two-dimensional integrals arising from the aggregation...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering science 2002-04, Vol.57 (7), p.1107-1119
Main Authors: Mahoney, Alan W., Ramkrishna, Doraiswami
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two refinements of Galerkin's method on finite elements were evaluated for the solution of population balance equations for precipitation systems. The traditional drawbacks of this approach have been the time required for computation of the two-dimensional integrals arising from the aggregation integrals and the difficulty in handling discontinuities that often arise in simulations of seeded reactors. The careful arrangement of invariant integrals for separable aggregation models allows for a thousandfold reduction in the computational costs. Discontinuities that may be present due to the hyperbolic nature of the system may be specifically tracked by the method of characteristics. These discontinuities will arise only from the initial distribution or nucleation and are readily identified. A combination of these techniques can be used that is intermediate in computational cost while still allowing discontinuous number densities. In a case study of calcium carbonate precipitation, it is found that the accuracy improvement gained by tracking the slope discontinuity may not be significant and that the computation speed may be sufficient for dynamic online optimization.
ISSN:0009-2509
1873-4405
DOI:10.1016/S0009-2509(01)00427-4