Loading…

Use of hormone-specific antibody probes for differential labeling of contributor cell populations in trace DNA mixtures

A significant proportion of casework analyzed by forensic science laboratories is often “touch” or trace forensic DNA evidence, which is deposited through physical contact and is comprised of sloughed epidermal cells. These samples can be challenging to analyze due to low DNA concentrations, frequen...

Full description

Saved in:
Bibliographic Details
Published in:International journal of legal medicine 2022-11, Vol.136 (6), p.1551-1564
Main Authors: Miller, Jennifer M., Lee, Christin, Ingram, Sarah, Yadavalli, Vamsi K., Greenspoon, Susan A., Ehrhardt, Christopher J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A significant proportion of casework analyzed by forensic science laboratories is often “touch” or trace forensic DNA evidence, which is deposited through physical contact and is comprised of sloughed epidermal cells. These samples can be challenging to analyze due to low DNA concentrations, frequent degradation, and the presence of cells from multiple individuals in the same sample. To address these challenges, we investigated a new approach for characterizing trace evidence prior to DNA profiling that labels epidermal cells with antibody probes targeting hormone molecules testosterone and dihydrotestosterone (DHT). The goal was to test whether cell populations derived from separate individuals showed different binding efficiencies to hormone probes and, thus, could be used to detect the presence of multiple cell populations. Additionally, we investigated whether antibody probes could be used to isolate contributor cell populations from an epidermal cell mixture and facilitate deconvolution of mixed DNA profiles recovered from touch/trace evidence. Results showed that cell populations from some individuals could differentiated in trace samples based on fluorescence histograms following probe labeling. However, certain pairs of contributors showed largely or completely overlapping histogram profiles and could not be resolved. Preliminary efforts to separate cell populations that could be differentiated with hormone probes with fluorescence-activated cell sorting (FACS) coupled to DNA profiling and probabilistic modeling indicated that it is possible to enrich contributor cell populations from touch/trace samples and produce more probative DNA profiles compared to the original mixture sample. The variability in labeling, differentiation, and physical separation of cell populations may be impacted by similarities in biochemical profiles across some contributors as well as imbalance of contributor DNA quantities in certain mixtures as is typical in casework involving touch/trace evidence. Ultimately, screening and separation of trace DNA samples with this approach may be presumptive and constrained by sample-specific parameters of the original mixture.
ISSN:0937-9827
1437-1596
DOI:10.1007/s00414-022-02887-x