Loading…

Searching a High Performance Feature Extractor for Text Recognition Network

Feature extractor plays a critical role in text recognition (TR), but customizing its architecture is relatively less explored due to expensive manual tweaking. In this article, inspired by the success of neural architecture search (NAS), we propose to search for suitable feature extractors. We desi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence 2023-05, Vol.45 (5), p.6231-6246
Main Authors: Zhang, Hui, Yao, Quanming, Kwok, James T., Bai, Xiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Feature extractor plays a critical role in text recognition (TR), but customizing its architecture is relatively less explored due to expensive manual tweaking. In this article, inspired by the success of neural architecture search (NAS), we propose to search for suitable feature extractors. We design a domain-specific search space by exploring principles for having good feature extractors. The space includes a 3D-structured space for the spatial model and a transformed-based space for the sequential model. As the space is huge and complexly structured, no existing NAS algorithms can be applied. We propose a two-stage algorithm to effectively search in the space. In the first stage, we cut the space into several blocks and progressively train each block with the help of an auxiliary head. We introduce the latency constrain into the second stage and search sub-network from the trained supernet via natural gradient descent. In experiments, a series of ablation studies are performed to better understand the designed space, search algorithm, and searched architectures. We also compare the proposed method with various state-of-the-art ones on both hand-written and scene TR tasks. Extensive results show that our approach can achieve better recognition performance with less latency. Code is avaliable at https://github.com/AutoML-Research/TREFE .
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2022.3205748