Loading…

Effects of data quality and quantity on deep learning for protein-ligand binding affinity prediction

[Display omitted] Prediction of protein-ligand binding affinities is crucial for computational drug discovery. A number of deep learning approaches have been developed in recent years to improve the accuracy of such affinity prediction. While the predicting power of these systems have advanced to so...

Full description

Saved in:
Bibliographic Details
Published in:Bioorganic & medicinal chemistry 2022-10, Vol.72, p.117003-117003, Article 117003
Main Authors: Fan, Frankie J., Shi, Yun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Prediction of protein-ligand binding affinities is crucial for computational drug discovery. A number of deep learning approaches have been developed in recent years to improve the accuracy of such affinity prediction. While the predicting power of these systems have advanced to some degrees depending on the dataset used for model training and testing, the effects of the quality and quantity of the underlying data have not been thoroughly examined. In this study, we employed erroneous datasets and data subsets of different sizes, created from one of the largest databases of experimental binding affinities, to train and evaluate a deep learning system based on convolutional neural networks. Our results show that data quality and quantity do have significant impacts on the prediction performance of trained models. Depending on the variations in data quality and quantity, the performance discrepancies could be comparable to or even larger than those observed among different deep learning approaches. In particular, the presence of proteins in the training data leads to a dramatic increase in prediction accuracy. This implies that continued accumulation of high-quality affinity data, especially for new protein targets, is indispensable for improving deep learning models to better predict protein-ligand binding affinities.
ISSN:0968-0896
1464-3391
DOI:10.1016/j.bmc.2022.117003