Loading…

Oriented multivalent silaffin-affinity immobilization of recombinant lipase on diatom surface: Reliable loading and high performance of biocatalyst

Microbial lipases are widely used biocatalysts; however, their functional surface immobilization should be designed for successful industrial applications. One of the unmet challenges is to develop a practical surface immobilization to achieve both high stability and activity of lipases upon the lar...

Full description

Saved in:
Bibliographic Details
Published in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2022-11, Vol.219, p.112830, Article 112830
Main Authors: Abdelhamid, Mohamed A.A., Son, Ryeo Gang, Park, Ki Sung, Pack, Seung Pil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microbial lipases are widely used biocatalysts; however, their functional surface immobilization should be designed for successful industrial applications. One of the unmet challenges is to develop a practical surface immobilization to achieve both high stability and activity of lipases upon the large loading. Herein, we present a silaffin-based multivalent design as a simple and oriented approach for Bacillus subtilis lipase A (LipA) immobilization on economic diatom biosilica matrix to yield highly-stable activity with reliable loading. Specifically, silaffin peptides Sil3H, Sil3K, and Sil3R, as monovalent or divalent genetic fusion tags, selectively immobilized LipA on biosilica surfaces. Sil3K peptide fusion to LipA termini most efficiently produced high catalytic activity upon immobilization. The activity was 70-fold greater than that of immobilized wild-type LipA. Compared to single fusion, the double Sil3K fusion displayed 1.7 higher enzymatic loading combined with high catalytic performances of LipA on biosilica surfaces. The multivalent immobilized LipA was distributed uniformly on biosilica surfaces. The biocatalyst was stable over a wide pH range with 98% retention activity after 10 reuses. The stabilized lipase fusion was compatible with laundry detergents, making it an attractive biocatalyst for detergent formulations. These findings demonstrate that multivalent surface immobilization is a plausible method for developing high-performance biocatalysts suitable for industrial biotechnological applications. [Display omitted] •Silaffin-based multivalent design for LipA immobilization has been developed.•Double Sil3K-tagged fusion showed the highest enzymatic performance on biosilica.•Multivalent immobilized LipA exhibited improved stability and reusability.•Biosilica-immobilized LipA biocatalyst could be a potential laundry detergent.
ISSN:0927-7765
1873-4367
1873-4367
DOI:10.1016/j.colsurfb.2022.112830