Loading…

Camphene-Assisted Fabrication of Free-Standing Lithium-Ion Battery Electrode Composites

Free-standing electrode (FSE) architectures hold the potential to dramatically increase the gravimetric and volumetric energy density of lithium-ion batteries (LIBs) by eliminating the parasitic dead weight and volume associated with traditional metal foil current collectors. However, current FSE fa...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2022-10, Vol.14 (40), p.45240-45253
Main Authors: Weeks, Jason A., Lauro, Samantha, Burrow, James N., Xiao, Han, Pender, Joshua P., Rylski, Adrian K., Daigle, Hugh, Page, Zachariah, Ellison, Christopher J., Mullins, C. Buddie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Free-standing electrode (FSE) architectures hold the potential to dramatically increase the gravimetric and volumetric energy density of lithium-ion batteries (LIBs) by eliminating the parasitic dead weight and volume associated with traditional metal foil current collectors. However, current FSE fabrication methods suffer from insufficient mechanical stability, electrochemical performance, or industrial adoptability. Here, we demonstrate a scalable camphene-assisted fabrication method that allows simultaneous casting and templating of FSEs comprising common LIB materials with a performance superior to their foil-cast counterparts. These porous, lightweight, and robust electrodes simultaneously enable enhanced rate performance by improving the mass and ion transport within the percolating conductive carbon pore network and eliminating current collectors for efficient and stable Li+ storage (>1000 cycles in half-cells) at increased gravimetric and areal energy densities. Compared to conventional foil-cast counterparts, the camphene-derived electrodes exhibit ∼1.5× enhanced gravimetric energy density, increased rate capability, and improved capacity retention in coin-cell configurations. A full cell containing both a free-standing anode and cathode was cycled for over 250 cycles with greater than 80% capacity retention at an areal capacity of 0.73 mA h/cm2. This active-material-agnostic electrode fabrication method holds potential to tailor the morphology of flexible, current-collector-free electrodes, thus enabling LIBs to be optimized for high power or high energy density Li+ storage. Furthermore, this platform provides an electrode fabrication method that is applicable to other electrochemical technologies and advanced manufacturing methods.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c08143