Loading…
Metabarcoding for biodiversity inventory blind spots: A test case using the beetle fauna of an insular cloud forest
Soils harbour a rich arthropod fauna, but many species are still not formally described (Linnaean shortfall) and the distribution of those already described is poorly understood (Wallacean shortfall). Metabarcoding holds much promise to fill this gap, however, nuclear copies of mitochondrial genes,...
Saved in:
Published in: | Molecular ecology 2023-12, Vol.32 (23), p.6130-6146 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Soils harbour a rich arthropod fauna, but many species are still not formally described (Linnaean shortfall) and the distribution of those already described is poorly understood (Wallacean shortfall). Metabarcoding holds much promise to fill this gap, however, nuclear copies of mitochondrial genes, and other artefacts lead to taxonomic inflation, which compromise the reliability of biodiversity inventories. Here, we explore the potential of a bioinformatic approach to jointly “denoise” and filter nonauthentic mitochondrial sequences from metabarcode reads to obtain reliable soil beetle inventories and address open questions in soil biodiversity research, such as the scale of dispersal constraints in different soil layers. We sampled cloud forest arthropod communities from 49 sites in the Anaga peninsula of Tenerife (Canary Islands). We performed whole organism community DNA (wocDNA) metabarcoding, and built a local reference database with COI barcode sequences of 310 species of Coleoptera for filtering reads and the identification of metabarcoded species. This resulted in reliable haplotype data after considerably reducing nuclear mitochondrial copies and other artefacts. Comparing our results with previous beetle inventories, we found: (i) new species records, potentially representing undescribed species; (ii) new distribution records, and (iii) validated phylogeographic structure when compared with traditional sequencing approaches. Analyses also revealed evidence for higher dispersal constraint within deeper soil beetle communities, compared to those closer to the surface. The combined power of barcoding and metabarcoding contribute to mitigate the important shortfalls associated with soil arthropod diversity data, and thus address unresolved questions for this vast biodiversity fraction. |
---|---|
ISSN: | 0962-1083 1365-294X 1365-294X |
DOI: | 10.1111/mec.16716 |