Loading…

An investigation of the use of strain gages to measure welding-induced residual stresses

The measurement of weld-induced residual stress is important in structures that are subjected to cyclic loading during their service life. Depending on their magnitude, stresses can influence the rate of crack growth under cyclic loading and hence affect the life of the structure. Because the level...

Full description

Saved in:
Bibliographic Details
Published in:Experimental mechanics 1997-09, Vol.37 (3), p.264-271
Main Authors: SHAH KHAN, M. Z, SAUNDERS, D. S, BALDWIN, N. J, SANFORD, D. H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The measurement of weld-induced residual stress is important in structures that are subjected to cyclic loading during their service life. Depending on their magnitude, stresses can influence the rate of crack growth under cyclic loading and hence affect the life of the structure. Because the level of residual stress may change during service, measurement of these changes is necessary for accurate life prediction of the structures. The measurement of welding-induced residual stress using strain gages poses significant problems, the most important being the potential damage to the gages by high temperatures generated in the welding process. This laboratory study was undertaken to assess the suitability and signal stability of commercially available resistive strain gages for the measurement of postweld residual stresses in a submarine hull structure. Adhesively bonded and weldable-type strain gages were attached to the surface of a 35 mm thick steel plate, which was then subjected to thermal cycles similar to those encountered during welding construction of a submarine pressure hull. This paper describes the strain gage application procedure, changes in the strain gage output at end of each experimental stage and the history of changes in the residual stress.
ISSN:0014-4851
1741-2765
DOI:10.1007/BF02317417