Loading…

Comparison of Tensile and Compressive Creep Behavior in Silicon Nitride

The creep behavior of a commercial grade of Si3N4 was studied at 1350° and 1400°C. Stresses ranged from 10 to 200 MPa in tension and from 30 to 300 MPa in compression. In tension, the creep rate increased linearly with stress at low stresses and exponentially at high stresses. By contrast, the creep...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Ceramic Society 2000-08, Vol.83 (8), p.2017-2022
Main Authors: Yoon, Kyung Jin, Wiederhorn, Sheldon M., Luecke, William E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The creep behavior of a commercial grade of Si3N4 was studied at 1350° and 1400°C. Stresses ranged from 10 to 200 MPa in tension and from 30 to 300 MPa in compression. In tension, the creep rate increased linearly with stress at low stresses and exponentially at high stresses. By contrast, the creep rate in compression increased linearly with stress over the entire stress range. Although compressive and tensile data exhibited an Arrhenius dependence on temperature, the activation energies for creep in tension, 715.3 ± 22.9 kJ/mol, and compression, 489.2 ± 62.0 kJ/mol, were not the same. These differences in creep behavior suggests that mechanisms of creep in tension and compression are different. Creep in tension is controlled by the formation of cavities. The cavity volume fraction increased linearly with increased tensile creep strain with a slope of unity. A cavitation model of creep, developed for materials that contain a triple‐junction network of second phase, rationalizes the observed creep behavior at high and low stresses. In compression, cavitation plays a less important role in the creep process. The volume fraction of cavities in compression was ∼18% of that in tension at 1.8% axial strain and approached zero at strains
ISSN:0002-7820
1551-2916
DOI:10.1111/j.1151-2916.2000.tb01505.x