Loading…
Prenatal exposure to perfluorooctane sulfonate alternatives and associations with neonatal thyroid stimulating hormone concentration: A birth cohort study
Chlorinated polyfluorinated ether sulfonic acids (Cl-PFESA) and perfluorobutane sulfonate (PFBS), used as perfluorooctanesulfonate (PFOS) alternatives, were indicated as thyroid hormone disruptive toxicants in experimental studies. However, it is unclear whether prenatal exposure to Cl-PFESA and PFB...
Saved in:
Published in: | Chemosphere (Oxford) 2023-01, Vol.311, p.136940-136940, Article 136940 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chlorinated polyfluorinated ether sulfonic acids (Cl-PFESA) and perfluorobutane sulfonate (PFBS), used as perfluorooctanesulfonate (PFOS) alternatives, were indicated as thyroid hormone disruptive toxicants in experimental studies. However, it is unclear whether prenatal exposure to Cl-PFESA and PFBS affects neonatal thyroid stimulating hormone (TSH) in human.
To disclose the relationships between prenatal Cl-PFESAs and PFBS exposure and neonatal thyroid-stimulating hormone (TSH) levels based on a perspective cohort study.
A total of 1015 pairs of mother and newborn were included from an ongoing birth cohort study in Wuhan, China, between 2013 and 2014. Six PFASs in cord blood sera and TSH concentration in neonatal postpartum heel sticks blood were quantified. Mixed linear and weighted quantile sum (WQS) regression models were applied to assess the individual and combination effects of PFASs exposure on neonatal TSH levels with multiple covariates adjustments.
After adjusting for potential confounders and other five PFASs, for each 1-ng/mL increase of PFBS or 8:2 Cl-PFESA, was negatively associated with 25.90% (95%CI: 37.37%, −12.32%; P |
---|---|
ISSN: | 0045-6535 1879-1298 |
DOI: | 10.1016/j.chemosphere.2022.136940 |