Loading…
Hamiltonian-Driven Adaptive Dynamic Programming With Efficient Experience Replay
This article presents a novel efficient experience-replay-based adaptive dynamic programming (ADP) for the optimal control problem of a class of nonlinear dynamical systems within the Hamiltonian-driven framework. The quasi-Hamiltonian is presented for the policy evaluation problem with an admissibl...
Saved in:
Published in: | IEEE transaction on neural networks and learning systems 2024-03, Vol.35 (3), p.1-13 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article presents a novel efficient experience-replay-based adaptive dynamic programming (ADP) for the optimal control problem of a class of nonlinear dynamical systems within the Hamiltonian-driven framework. The quasi-Hamiltonian is presented for the policy evaluation problem with an admissible policy. With the quasi-Hamiltonian, a novel composite critic learning mechanism is developed to combine the instantaneous data with the historical data. In addition, the pseudo-Hamiltonian is defined to deal with the performance optimization problem. Based on the pseudo-Hamiltonian, the conventional Hamilton-Jacobi-Bellman (HJB) equation can be represented in a filtered form, which can be implemented online. Theoretical analysis is investigated in terms of the convergence of the adaptive critic design and the stability of the closed-loop systems, where parameter convergence can be achieved under a weakened excitation condition. Simulation studies are investigated to verify the efficacy of the presented design scheme. |
---|---|
ISSN: | 2162-237X 2162-2388 |
DOI: | 10.1109/TNNLS.2022.3213566 |