Loading…
Aligning Small Datasets Using Domain Adversarial Learning: Applications in Automated in Vivo Oral Cancer Diagnosis
Deep learning approaches for medical image analysis are limited by small data set size due to factors such as patient privacy and difficulties in obtaining expert labelling for each image. In medical imaging system development pipelines, phases for system development and classification algorithms of...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2023-01, Vol.27 (1), p.457-468 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Deep learning approaches for medical image analysis are limited by small data set size due to factors such as patient privacy and difficulties in obtaining expert labelling for each image. In medical imaging system development pipelines, phases for system development and classification algorithms often overlap with data collection, creating small disjoint data sets collected at numerous locations with differing protocols. In this setting, merging data from different data collection centers increases the amount of training data. However, a direct combination of datasets will likely fail due to domain shifts between imaging centers. In contrast to previous approaches that focus on a single data set, we add a domain adaptation module to a neural network and train using multiple data sets. Our approach encourages domain invariance between two multispectral autofluorescence imaging (maFLIM) data sets of in vivo oral lesions collected with an imaging system currently in development. The two data sets have differences in the sub-populations imaged and in the calibration procedures used during data collection. We mitigate these differences using a gradient reversal layer and domain classifier. Our final model trained with two data sets substantially increases performance, including a significant increase in specificity. We also achieve a significant increase in average performance over the best baseline model train with two domains ( p = 0.0341). Our approach lays the foundation for faster development of computer-aided diagnostic systems and presents a feasible approach for creating a robust classifier that aligns images from multiple data centers in the presence of domain shifts. |
---|---|
ISSN: | 2168-2194 2168-2208 |
DOI: | 10.1109/JBHI.2022.3217015 |