Loading…

Optimal filtering in fractional Fourier domains

For time-invariant degradation models and stationary signals and noise, the classical Fourier domain Wiener filter, which can be implemented in O(N log N) time, gives the minimum mean-square-error estimate of the original undistorted signal. For time-varying degradations and nonstationary processes,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 1997-05, Vol.45 (5), p.1129-1143
Main Authors: Kutay, A., Ozaktas, H.M., Ankan, O., Onural, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For time-invariant degradation models and stationary signals and noise, the classical Fourier domain Wiener filter, which can be implemented in O(N log N) time, gives the minimum mean-square-error estimate of the original undistorted signal. For time-varying degradations and nonstationary processes, however, the optimal linear estimate requires O(N/sup 2/) time for implementation. We consider filtering in fractional Fourier domains, which enables significant reduction of the error compared with ordinary Fourier domain filtering for certain types of degradation and noise (especially of chirped nature), while requiring only O(N log N) implementation time. Thus, improved performance is achieved at no additional cost. Expressions for the optimal filter functions in fractional domains are derived, and several illustrative examples are given in which significant reduction of the error (by a factor of 50) is obtained.
ISSN:1053-587X
1941-0476
DOI:10.1109/78.575688