Loading…
Mechanism of highly efficient electrochemical degradation of antibiotic sulfadiazine using a layer-by-layer GNPs/PbO2 electrode
A PbO2 electrode integrating electrocatalytic and adsorptive functions was successfully fabricated by embedding layer-by-layer graphene nanoplatelets (GNPs) into β-PbO2 active layer (GNPs/PbO2) and employed as anode for high-efficient removal of sulfadiazine (SDZ). In electrochemical degradation exp...
Saved in:
Published in: | Environmental research 2023-01, Vol.217, p.114778-114778, Article 114778 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A PbO2 electrode integrating electrocatalytic and adsorptive functions was successfully fabricated by embedding layer-by-layer graphene nanoplatelets (GNPs) into β-PbO2 active layer (GNPs/PbO2) and employed as anode for high-efficient removal of sulfadiazine (SDZ). In electrochemical degradation experiments, SDZ was quickly enriched on the surface of GNPs/PbO2 film via adsorption and then oxidized by ⋅OH in-site. In terms of the electrocatalytic performance and adsorption of electrode, the optimal electrodeposition time for each β-PbO2 outer layer was 4 min (GNPs/PbO2-4). Compared with conventional PbO2 electrode, the layer-by-layer GNPs resulted in the smaller crystal size and denser surface of PbO2 electrode, thus facilitating the generation of active oxygen species. At the same time, the specific surface area, oxygen evolution potential (OEP) of the anode were enhanced and the charge-transfer resistance was reduced. For GNPs/PbO2-4 anode, the optimal conditions of electrochemical oxidation of SDZ were identified as initial pH 9, 50 mg/L of SDZ and 20 mA/cm2 of current density using response surface methodology (RSM), 98.15% of SDZ could be removed in this case. The contribution of radical oxidation and non-radical oxidation to SDZ removal was about 79% and 21%, respectively. Moreover, the reaction pathways of SDZ on the GNPs/PbO2-4 electrode involving hydroxylation, radical reaction and ring cleavage were speculated. Finally, the continuous SDZ degradation and accelerated service lifetime test suggested that the GNPs/PbO2-4 electrode was shown to be stable and repeatable, and the Pb2+ concentration was measured to ensure the safety of the treated solution. Consequently, the above findings provide an innovative way to design and prepare an effective and stable PbO2 electrode for electrochemical degradation of antibiotic wastewater.
TOC. [Display omitted]
•GNPs/PbO2 anode possesses dual electrocatalytic and adsorptive functions.•High-efficient removal of sulfadiazine was achieved on the GNPs/PbO2 anode.•Operation parameters were optimized using a response surface methodology.•The contribution of radical and non-radical oxidation was quantitatively analyzed.•GNPs/PbO2 anode has excellent electrochemical property, stability and safety. |
---|---|
ISSN: | 0013-9351 1096-0953 |
DOI: | 10.1016/j.envres.2022.114778 |