Loading…

Deep learning radiomics of ultrasonography for comprehensively predicting tumor and axillary lymph node status after neoadjuvant chemotherapy in breast cancer patients: A multicenter study

Abatract Background Neoadjuvant chemotherapy (NAC) can downstage tumors and axillary lymph nodes in breast cancer (BC) patients. However, tumors and axillary response to NAC are not parallel and vary among patients. This study aims to explore the feasibility of deep learning radiomics nomogram (DLRN...

Full description

Saved in:
Bibliographic Details
Published in:Cancer 2023-02, Vol.129 (3), p.356-366
Main Authors: Gu, Jionghui, Tong, Tong, Xu, Dong, Cheng, Fang, Fang, Chengyu, He, Chang, Wang, Jing, Wang, Baohua, Yang, Xin, Wang, Kun, Tian, Jie, Jiang, Tian'an
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abatract Background Neoadjuvant chemotherapy (NAC) can downstage tumors and axillary lymph nodes in breast cancer (BC) patients. However, tumors and axillary response to NAC are not parallel and vary among patients. This study aims to explore the feasibility of deep learning radiomics nomogram (DLRN) for independently predicting the status of tumors and lymph node metastasis (LNM) after NAC. Methods In total, 484 BC patients who completed NAC from two hospitals (H1: 297 patients in the training cohort and 99 patients in the validation cohort; H2: 88 patients in the test cohort) were retrospectively enrolled. The authors developed two deep learning radiomics (DLR) models for personalized prediction of the tumor pathologic complete response (PCR) to NAC (DLR‐PCR) and the LNM status (DLR‐LNM) after NAC based on pre‐NAC and after‐NAC ultrasonography images. Furthermore, they proposed two DLRNs (DLRN‐PCR and DLRN‐LNM) for two different tasks based on the clinical characteristics and DLR scores, which were generated from both DLR‐PCR and DLR‐LNM. Results In the validation and test cohorts, DLRN‐PCR exhibited areas under the receiver operating characteristic curves (AUCs) of 0.903 and 0.896 with sensitivities of 91.2% and 75.0%, respectively. DLRN‐LNM achieved AUCs of 0.853 and 0.863, specificities of 82.0% and 81.8%, and negative predictive values of 81.3% and 87.2% in the validation and test cohorts, respectively. The two DLRN models achieved satisfactory predictive performance based on different BC subtypes. Conclusions The proposed DLRN models have the potential to accurately predict the tumor PCR and LNM status after NAC. Plain language summary In this study, we proposed two deep learning radiomics nomogram models based on pre‐neoadjuvant chemotherapy (NAC) and preoperative ultrasonography images for independently predicting the status of tumor and axillary lymph node (ALN) after NAC. A more comprehensive assessment of the patient's condition after NAC can be achieved by predicting the status of the tumor and ALN separately. Our model can potentially provide a noninvasive and personalized method to offer decision support for organ preservation and avoidance of excessive surgery. The authors believe that this study makes a significant contribution to the literature because the proposed deep learning radiomics (DLR) nomogram models can accurately predict the tumor pathologic complete response and lymph node metastasis status after neoadjuvant chemotherapy (NAC
ISSN:0008-543X
1097-0142
DOI:10.1002/cncr.34540