Loading…
Finite-Element Model for High-Velocity Channels
Numerical modelers of high-velocity channels are faced with supercritical transitions and the difficulty in capturing discontinuities in the flow field, known as hydraulic jumps. The implied smoothness of a numerical scheme can produce fictitious oscillations near these jump locations and can lead t...
Saved in:
Published in: | Journal of hydraulic engineering (New York, N.Y.) N.Y.), 1995-10, Vol.121 (10), p.710-716 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Numerical modelers of high-velocity channels are faced with supercritical transitions and the difficulty in capturing discontinuities in the flow field, known as hydraulic jumps. The implied smoothness of a numerical scheme can produce fictitious oscillations near these jump locations and can lead to instability. It is also important that the discrete numerical operations preserve the Rankine-Hugoniot conditions and accurately model jump speed and location. The geometric complexity of high-velocity channels with bridge piers and service ramps are easily represented using an unstructured model. A two-dimensional finite-element model that utilizes a characteristic based Petrov-Galerkin method and a shock-detection mechanism, which relies on elemental energy variation results in a robust system to model high-velocity channels. Comparisons are made between analytic shock-speed results, published laboratory data of a lateral contraction, and with a more general physical model. |
---|---|
ISSN: | 0733-9429 1943-7900 |
DOI: | 10.1061/(ASCE)0733-9429(1995)121:10(710) |