Loading…
Brain injury triggers cell‐type‐specific and time‐dependent endoplasmic reticulum stress responses
The unfolded protein response (UPR) is a signal transduction network that responds to endoplasmic reticulum (ER) stress by coordinating protein homeostasis to maintain cell viability. The UPR can also trigger cell death when adaptive responses fail to improve protein homeostasis. Despite accumulatin...
Saved in:
Published in: | Glia 2023-03, Vol.71 (3), p.667-681 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4233-e1324c4674ba74b6b968def1f444f260ef69bc84313c899b768a25cc657ec73a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4233-e1324c4674ba74b6b968def1f444f260ef69bc84313c899b768a25cc657ec73a3 |
container_end_page | 681 |
container_issue | 3 |
container_start_page | 667 |
container_title | Glia |
container_volume | 71 |
creator | Fan, Qiyan Takarada‐Iemata, Mika Okitani, Nahoko Tamatani, Takashi Ishii, Hiroshi Hattori, Tsuyoshi Kiryu‐Seo, Sumiko Kiyama, Hiroshi Hori, Osamu |
description | The unfolded protein response (UPR) is a signal transduction network that responds to endoplasmic reticulum (ER) stress by coordinating protein homeostasis to maintain cell viability. The UPR can also trigger cell death when adaptive responses fail to improve protein homeostasis. Despite accumulating evidence suggesting that the UPR plays a role in neurodegenerative diseases and brain insults, our understanding of how ER stress is induced under neuropathological conditions is limited. Here, we investigated the cell‐ and time‐specific patterns of the ER stress response after brain injury using ER stress‐activated indicator (ERAI) mice, which enable monitoring of the UPR in vivo via increased fluorescence of a spliced XBP‐1 protein fused with the green fluorescent protein (GFP) variant Venus. Following cortical stab injury of ERAI mice, the GFP signal and number of GFP+ cells increased in the ipsilateral cortex throughout the observation period (6 h to 7 days post‐injury), confirming the induction of the UPR. GFP signals were observed in injured neurons early (from 6 h) after brain injury. However, non‐neuronal cells, mainly endothelial cells followed by astrocytes, accounted for the majority of GFP+ cells after brain injury. Similar results were obtained in a mouse model of focal cerebral ischemia. These findings suggest that activation of the UPR in both neuronal and non‐neuronal cells, especially endothelial cells and astrocytes, may play an important role in and could be a potential therapeutic target for acute brain injuries.
Main Points
Brain injury induces endoplasmic reticulum (ER) stress responses in neuronal and non‐neuronal cells.
ER stress responses after brain injury occur rapidly in neurons, most frequently in vascular endothelial cells, and relatively late in astrocytes. |
doi_str_mv | 10.1002/glia.24303 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2739066291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2767369295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4233-e1324c4674ba74b6b968def1f444f260ef69bc84313c899b768a25cc657ec73a3</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgitbqxgeQATcijObWzGRZi1ah4EbXQyZzpqbMzZwZpDsfwWf0SUytunDhIhxy-PhJfkJOGL1klPKrZeXMJZeCih0yYlSnMWNC7ZIRTbWMmdTsgBwirihl4ZLskwOhJONcTEbk-dob10SuWQ1-HfXeLZfgMbJQVR9v7_26gzCwA-tKZyPTFFHv6s2ugA6aApo-CqPtKoN1AB56Z4dqqCPsPSCGBXZtg4BHZK80FcLx9xyTp9ubx9ldvHiY38-mi9hKLkQMTHBppUpkbsJRuVZpASUrpZQlVxRKpXObSsGETbXOE5UaPrFWTRKwiTBiTM63uZ1vXwbAPqsdbr5jGmgHzHgiNFWKaxbo2R-6agffhNcFpRKhNNeToC62yvoW0UOZdd7Vxq8zRrNN_9mm_-yr_4BPvyOHvIbil_4UHgDbgldXwfqfqGy-uJ9uQz8BQLiT8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767369295</pqid></control><display><type>article</type><title>Brain injury triggers cell‐type‐specific and time‐dependent endoplasmic reticulum stress responses</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Fan, Qiyan ; Takarada‐Iemata, Mika ; Okitani, Nahoko ; Tamatani, Takashi ; Ishii, Hiroshi ; Hattori, Tsuyoshi ; Kiryu‐Seo, Sumiko ; Kiyama, Hiroshi ; Hori, Osamu</creator><creatorcontrib>Fan, Qiyan ; Takarada‐Iemata, Mika ; Okitani, Nahoko ; Tamatani, Takashi ; Ishii, Hiroshi ; Hattori, Tsuyoshi ; Kiryu‐Seo, Sumiko ; Kiyama, Hiroshi ; Hori, Osamu</creatorcontrib><description>The unfolded protein response (UPR) is a signal transduction network that responds to endoplasmic reticulum (ER) stress by coordinating protein homeostasis to maintain cell viability. The UPR can also trigger cell death when adaptive responses fail to improve protein homeostasis. Despite accumulating evidence suggesting that the UPR plays a role in neurodegenerative diseases and brain insults, our understanding of how ER stress is induced under neuropathological conditions is limited. Here, we investigated the cell‐ and time‐specific patterns of the ER stress response after brain injury using ER stress‐activated indicator (ERAI) mice, which enable monitoring of the UPR in vivo via increased fluorescence of a spliced XBP‐1 protein fused with the green fluorescent protein (GFP) variant Venus. Following cortical stab injury of ERAI mice, the GFP signal and number of GFP+ cells increased in the ipsilateral cortex throughout the observation period (6 h to 7 days post‐injury), confirming the induction of the UPR. GFP signals were observed in injured neurons early (from 6 h) after brain injury. However, non‐neuronal cells, mainly endothelial cells followed by astrocytes, accounted for the majority of GFP+ cells after brain injury. Similar results were obtained in a mouse model of focal cerebral ischemia. These findings suggest that activation of the UPR in both neuronal and non‐neuronal cells, especially endothelial cells and astrocytes, may play an important role in and could be a potential therapeutic target for acute brain injuries.
Main Points
Brain injury induces endoplasmic reticulum (ER) stress responses in neuronal and non‐neuronal cells.
ER stress responses after brain injury occur rapidly in neurons, most frequently in vascular endothelial cells, and relatively late in astrocytes.</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.24303</identifier><identifier>PMID: 36412235</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Animals ; Astrocytes ; Brain ; Brain Injuries - metabolism ; Brain injury ; Cell death ; Cell viability ; cerebral ischemia ; Endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Endoplasmic Reticulum Stress - physiology ; Endothelial Cells ; ER stress ; ERAI ; Fluorescence ; Green fluorescent protein ; Head injuries ; Homeostasis ; Ischemia ; Mice ; Neurodegenerative diseases ; Protein folding ; Proteins ; Signal transduction ; Stress response ; Therapeutic targets ; Time dependence ; Traumatic brain injury ; Unfolded Protein Response ; UPR</subject><ispartof>Glia, 2023-03, Vol.71 (3), p.667-681</ispartof><rights>2022 Wiley Periodicals LLC.</rights><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4233-e1324c4674ba74b6b968def1f444f260ef69bc84313c899b768a25cc657ec73a3</citedby><cites>FETCH-LOGICAL-c4233-e1324c4674ba74b6b968def1f444f260ef69bc84313c899b768a25cc657ec73a3</cites><orcidid>0000-0002-2113-0707 ; 0000-0002-8168-8710 ; 0000-0002-2210-0446 ; 0000-0001-6776-4660 ; 0000-0001-5963-046X ; 0000-0001-6213-1258</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36412235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Qiyan</creatorcontrib><creatorcontrib>Takarada‐Iemata, Mika</creatorcontrib><creatorcontrib>Okitani, Nahoko</creatorcontrib><creatorcontrib>Tamatani, Takashi</creatorcontrib><creatorcontrib>Ishii, Hiroshi</creatorcontrib><creatorcontrib>Hattori, Tsuyoshi</creatorcontrib><creatorcontrib>Kiryu‐Seo, Sumiko</creatorcontrib><creatorcontrib>Kiyama, Hiroshi</creatorcontrib><creatorcontrib>Hori, Osamu</creatorcontrib><title>Brain injury triggers cell‐type‐specific and time‐dependent endoplasmic reticulum stress responses</title><title>Glia</title><addtitle>Glia</addtitle><description>The unfolded protein response (UPR) is a signal transduction network that responds to endoplasmic reticulum (ER) stress by coordinating protein homeostasis to maintain cell viability. The UPR can also trigger cell death when adaptive responses fail to improve protein homeostasis. Despite accumulating evidence suggesting that the UPR plays a role in neurodegenerative diseases and brain insults, our understanding of how ER stress is induced under neuropathological conditions is limited. Here, we investigated the cell‐ and time‐specific patterns of the ER stress response after brain injury using ER stress‐activated indicator (ERAI) mice, which enable monitoring of the UPR in vivo via increased fluorescence of a spliced XBP‐1 protein fused with the green fluorescent protein (GFP) variant Venus. Following cortical stab injury of ERAI mice, the GFP signal and number of GFP+ cells increased in the ipsilateral cortex throughout the observation period (6 h to 7 days post‐injury), confirming the induction of the UPR. GFP signals were observed in injured neurons early (from 6 h) after brain injury. However, non‐neuronal cells, mainly endothelial cells followed by astrocytes, accounted for the majority of GFP+ cells after brain injury. Similar results were obtained in a mouse model of focal cerebral ischemia. These findings suggest that activation of the UPR in both neuronal and non‐neuronal cells, especially endothelial cells and astrocytes, may play an important role in and could be a potential therapeutic target for acute brain injuries.
Main Points
Brain injury induces endoplasmic reticulum (ER) stress responses in neuronal and non‐neuronal cells.
ER stress responses after brain injury occur rapidly in neurons, most frequently in vascular endothelial cells, and relatively late in astrocytes.</description><subject>Animals</subject><subject>Astrocytes</subject><subject>Brain</subject><subject>Brain Injuries - metabolism</subject><subject>Brain injury</subject><subject>Cell death</subject><subject>Cell viability</subject><subject>cerebral ischemia</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Endoplasmic Reticulum Stress - physiology</subject><subject>Endothelial Cells</subject><subject>ER stress</subject><subject>ERAI</subject><subject>Fluorescence</subject><subject>Green fluorescent protein</subject><subject>Head injuries</subject><subject>Homeostasis</subject><subject>Ischemia</subject><subject>Mice</subject><subject>Neurodegenerative diseases</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Signal transduction</subject><subject>Stress response</subject><subject>Therapeutic targets</subject><subject>Time dependence</subject><subject>Traumatic brain injury</subject><subject>Unfolded Protein Response</subject><subject>UPR</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgitbqxgeQATcijObWzGRZi1ah4EbXQyZzpqbMzZwZpDsfwWf0SUytunDhIhxy-PhJfkJOGL1klPKrZeXMJZeCih0yYlSnMWNC7ZIRTbWMmdTsgBwirihl4ZLskwOhJONcTEbk-dob10SuWQ1-HfXeLZfgMbJQVR9v7_26gzCwA-tKZyPTFFHv6s2ugA6aApo-CqPtKoN1AB56Z4dqqCPsPSCGBXZtg4BHZK80FcLx9xyTp9ubx9ldvHiY38-mi9hKLkQMTHBppUpkbsJRuVZpASUrpZQlVxRKpXObSsGETbXOE5UaPrFWTRKwiTBiTM63uZ1vXwbAPqsdbr5jGmgHzHgiNFWKaxbo2R-6agffhNcFpRKhNNeToC62yvoW0UOZdd7Vxq8zRrNN_9mm_-yr_4BPvyOHvIbil_4UHgDbgldXwfqfqGy-uJ9uQz8BQLiT8A</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Fan, Qiyan</creator><creator>Takarada‐Iemata, Mika</creator><creator>Okitani, Nahoko</creator><creator>Tamatani, Takashi</creator><creator>Ishii, Hiroshi</creator><creator>Hattori, Tsuyoshi</creator><creator>Kiryu‐Seo, Sumiko</creator><creator>Kiyama, Hiroshi</creator><creator>Hori, Osamu</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2113-0707</orcidid><orcidid>https://orcid.org/0000-0002-8168-8710</orcidid><orcidid>https://orcid.org/0000-0002-2210-0446</orcidid><orcidid>https://orcid.org/0000-0001-6776-4660</orcidid><orcidid>https://orcid.org/0000-0001-5963-046X</orcidid><orcidid>https://orcid.org/0000-0001-6213-1258</orcidid></search><sort><creationdate>202303</creationdate><title>Brain injury triggers cell‐type‐specific and time‐dependent endoplasmic reticulum stress responses</title><author>Fan, Qiyan ; Takarada‐Iemata, Mika ; Okitani, Nahoko ; Tamatani, Takashi ; Ishii, Hiroshi ; Hattori, Tsuyoshi ; Kiryu‐Seo, Sumiko ; Kiyama, Hiroshi ; Hori, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4233-e1324c4674ba74b6b968def1f444f260ef69bc84313c899b768a25cc657ec73a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Astrocytes</topic><topic>Brain</topic><topic>Brain Injuries - metabolism</topic><topic>Brain injury</topic><topic>Cell death</topic><topic>Cell viability</topic><topic>cerebral ischemia</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Endoplasmic Reticulum Stress - physiology</topic><topic>Endothelial Cells</topic><topic>ER stress</topic><topic>ERAI</topic><topic>Fluorescence</topic><topic>Green fluorescent protein</topic><topic>Head injuries</topic><topic>Homeostasis</topic><topic>Ischemia</topic><topic>Mice</topic><topic>Neurodegenerative diseases</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Signal transduction</topic><topic>Stress response</topic><topic>Therapeutic targets</topic><topic>Time dependence</topic><topic>Traumatic brain injury</topic><topic>Unfolded Protein Response</topic><topic>UPR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Qiyan</creatorcontrib><creatorcontrib>Takarada‐Iemata, Mika</creatorcontrib><creatorcontrib>Okitani, Nahoko</creatorcontrib><creatorcontrib>Tamatani, Takashi</creatorcontrib><creatorcontrib>Ishii, Hiroshi</creatorcontrib><creatorcontrib>Hattori, Tsuyoshi</creatorcontrib><creatorcontrib>Kiryu‐Seo, Sumiko</creatorcontrib><creatorcontrib>Kiyama, Hiroshi</creatorcontrib><creatorcontrib>Hori, Osamu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Qiyan</au><au>Takarada‐Iemata, Mika</au><au>Okitani, Nahoko</au><au>Tamatani, Takashi</au><au>Ishii, Hiroshi</au><au>Hattori, Tsuyoshi</au><au>Kiryu‐Seo, Sumiko</au><au>Kiyama, Hiroshi</au><au>Hori, Osamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain injury triggers cell‐type‐specific and time‐dependent endoplasmic reticulum stress responses</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2023-03</date><risdate>2023</risdate><volume>71</volume><issue>3</issue><spage>667</spage><epage>681</epage><pages>667-681</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><abstract>The unfolded protein response (UPR) is a signal transduction network that responds to endoplasmic reticulum (ER) stress by coordinating protein homeostasis to maintain cell viability. The UPR can also trigger cell death when adaptive responses fail to improve protein homeostasis. Despite accumulating evidence suggesting that the UPR plays a role in neurodegenerative diseases and brain insults, our understanding of how ER stress is induced under neuropathological conditions is limited. Here, we investigated the cell‐ and time‐specific patterns of the ER stress response after brain injury using ER stress‐activated indicator (ERAI) mice, which enable monitoring of the UPR in vivo via increased fluorescence of a spliced XBP‐1 protein fused with the green fluorescent protein (GFP) variant Venus. Following cortical stab injury of ERAI mice, the GFP signal and number of GFP+ cells increased in the ipsilateral cortex throughout the observation period (6 h to 7 days post‐injury), confirming the induction of the UPR. GFP signals were observed in injured neurons early (from 6 h) after brain injury. However, non‐neuronal cells, mainly endothelial cells followed by astrocytes, accounted for the majority of GFP+ cells after brain injury. Similar results were obtained in a mouse model of focal cerebral ischemia. These findings suggest that activation of the UPR in both neuronal and non‐neuronal cells, especially endothelial cells and astrocytes, may play an important role in and could be a potential therapeutic target for acute brain injuries.
Main Points
Brain injury induces endoplasmic reticulum (ER) stress responses in neuronal and non‐neuronal cells.
ER stress responses after brain injury occur rapidly in neurons, most frequently in vascular endothelial cells, and relatively late in astrocytes.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>36412235</pmid><doi>10.1002/glia.24303</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2113-0707</orcidid><orcidid>https://orcid.org/0000-0002-8168-8710</orcidid><orcidid>https://orcid.org/0000-0002-2210-0446</orcidid><orcidid>https://orcid.org/0000-0001-6776-4660</orcidid><orcidid>https://orcid.org/0000-0001-5963-046X</orcidid><orcidid>https://orcid.org/0000-0001-6213-1258</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-1491 |
ispartof | Glia, 2023-03, Vol.71 (3), p.667-681 |
issn | 0894-1491 1098-1136 |
language | eng |
recordid | cdi_proquest_miscellaneous_2739066291 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Animals Astrocytes Brain Brain Injuries - metabolism Brain injury Cell death Cell viability cerebral ischemia Endoplasmic reticulum Endoplasmic Reticulum - metabolism Endoplasmic Reticulum Stress - physiology Endothelial Cells ER stress ERAI Fluorescence Green fluorescent protein Head injuries Homeostasis Ischemia Mice Neurodegenerative diseases Protein folding Proteins Signal transduction Stress response Therapeutic targets Time dependence Traumatic brain injury Unfolded Protein Response UPR |
title | Brain injury triggers cell‐type‐specific and time‐dependent endoplasmic reticulum stress responses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T00%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20injury%20triggers%20cell%E2%80%90type%E2%80%90specific%20and%20time%E2%80%90dependent%20endoplasmic%20reticulum%20stress%20responses&rft.jtitle=Glia&rft.au=Fan,%20Qiyan&rft.date=2023-03&rft.volume=71&rft.issue=3&rft.spage=667&rft.epage=681&rft.pages=667-681&rft.issn=0894-1491&rft.eissn=1098-1136&rft_id=info:doi/10.1002/glia.24303&rft_dat=%3Cproquest_cross%3E2767369295%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4233-e1324c4674ba74b6b968def1f444f260ef69bc84313c899b768a25cc657ec73a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767369295&rft_id=info:pmid/36412235&rfr_iscdi=true |