Loading…

Brain injury triggers cell‐type‐specific and time‐dependent endoplasmic reticulum stress responses

The unfolded protein response (UPR) is a signal transduction network that responds to endoplasmic reticulum (ER) stress by coordinating protein homeostasis to maintain cell viability. The UPR can also trigger cell death when adaptive responses fail to improve protein homeostasis. Despite accumulatin...

Full description

Saved in:
Bibliographic Details
Published in:Glia 2023-03, Vol.71 (3), p.667-681
Main Authors: Fan, Qiyan, Takarada‐Iemata, Mika, Okitani, Nahoko, Tamatani, Takashi, Ishii, Hiroshi, Hattori, Tsuyoshi, Kiryu‐Seo, Sumiko, Kiyama, Hiroshi, Hori, Osamu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4233-e1324c4674ba74b6b968def1f444f260ef69bc84313c899b768a25cc657ec73a3
cites cdi_FETCH-LOGICAL-c4233-e1324c4674ba74b6b968def1f444f260ef69bc84313c899b768a25cc657ec73a3
container_end_page 681
container_issue 3
container_start_page 667
container_title Glia
container_volume 71
creator Fan, Qiyan
Takarada‐Iemata, Mika
Okitani, Nahoko
Tamatani, Takashi
Ishii, Hiroshi
Hattori, Tsuyoshi
Kiryu‐Seo, Sumiko
Kiyama, Hiroshi
Hori, Osamu
description The unfolded protein response (UPR) is a signal transduction network that responds to endoplasmic reticulum (ER) stress by coordinating protein homeostasis to maintain cell viability. The UPR can also trigger cell death when adaptive responses fail to improve protein homeostasis. Despite accumulating evidence suggesting that the UPR plays a role in neurodegenerative diseases and brain insults, our understanding of how ER stress is induced under neuropathological conditions is limited. Here, we investigated the cell‐ and time‐specific patterns of the ER stress response after brain injury using ER stress‐activated indicator (ERAI) mice, which enable monitoring of the UPR in vivo via increased fluorescence of a spliced XBP‐1 protein fused with the green fluorescent protein (GFP) variant Venus. Following cortical stab injury of ERAI mice, the GFP signal and number of GFP+ cells increased in the ipsilateral cortex throughout the observation period (6 h to 7 days post‐injury), confirming the induction of the UPR. GFP signals were observed in injured neurons early (from 6 h) after brain injury. However, non‐neuronal cells, mainly endothelial cells followed by astrocytes, accounted for the majority of GFP+ cells after brain injury. Similar results were obtained in a mouse model of focal cerebral ischemia. These findings suggest that activation of the UPR in both neuronal and non‐neuronal cells, especially endothelial cells and astrocytes, may play an important role in and could be a potential therapeutic target for acute brain injuries. Main Points Brain injury induces endoplasmic reticulum (ER) stress responses in neuronal and non‐neuronal cells. ER stress responses after brain injury occur rapidly in neurons, most frequently in vascular endothelial cells, and relatively late in astrocytes.
doi_str_mv 10.1002/glia.24303
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2739066291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2767369295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4233-e1324c4674ba74b6b968def1f444f260ef69bc84313c899b768a25cc657ec73a3</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgitbqxgeQATcijObWzGRZi1ah4EbXQyZzpqbMzZwZpDsfwWf0SUytunDhIhxy-PhJfkJOGL1klPKrZeXMJZeCih0yYlSnMWNC7ZIRTbWMmdTsgBwirihl4ZLskwOhJONcTEbk-dob10SuWQ1-HfXeLZfgMbJQVR9v7_26gzCwA-tKZyPTFFHv6s2ugA6aApo-CqPtKoN1AB56Z4dqqCPsPSCGBXZtg4BHZK80FcLx9xyTp9ubx9ldvHiY38-mi9hKLkQMTHBppUpkbsJRuVZpASUrpZQlVxRKpXObSsGETbXOE5UaPrFWTRKwiTBiTM63uZ1vXwbAPqsdbr5jGmgHzHgiNFWKaxbo2R-6agffhNcFpRKhNNeToC62yvoW0UOZdd7Vxq8zRrNN_9mm_-yr_4BPvyOHvIbil_4UHgDbgldXwfqfqGy-uJ9uQz8BQLiT8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767369295</pqid></control><display><type>article</type><title>Brain injury triggers cell‐type‐specific and time‐dependent endoplasmic reticulum stress responses</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Fan, Qiyan ; Takarada‐Iemata, Mika ; Okitani, Nahoko ; Tamatani, Takashi ; Ishii, Hiroshi ; Hattori, Tsuyoshi ; Kiryu‐Seo, Sumiko ; Kiyama, Hiroshi ; Hori, Osamu</creator><creatorcontrib>Fan, Qiyan ; Takarada‐Iemata, Mika ; Okitani, Nahoko ; Tamatani, Takashi ; Ishii, Hiroshi ; Hattori, Tsuyoshi ; Kiryu‐Seo, Sumiko ; Kiyama, Hiroshi ; Hori, Osamu</creatorcontrib><description>The unfolded protein response (UPR) is a signal transduction network that responds to endoplasmic reticulum (ER) stress by coordinating protein homeostasis to maintain cell viability. The UPR can also trigger cell death when adaptive responses fail to improve protein homeostasis. Despite accumulating evidence suggesting that the UPR plays a role in neurodegenerative diseases and brain insults, our understanding of how ER stress is induced under neuropathological conditions is limited. Here, we investigated the cell‐ and time‐specific patterns of the ER stress response after brain injury using ER stress‐activated indicator (ERAI) mice, which enable monitoring of the UPR in vivo via increased fluorescence of a spliced XBP‐1 protein fused with the green fluorescent protein (GFP) variant Venus. Following cortical stab injury of ERAI mice, the GFP signal and number of GFP+ cells increased in the ipsilateral cortex throughout the observation period (6 h to 7 days post‐injury), confirming the induction of the UPR. GFP signals were observed in injured neurons early (from 6 h) after brain injury. However, non‐neuronal cells, mainly endothelial cells followed by astrocytes, accounted for the majority of GFP+ cells after brain injury. Similar results were obtained in a mouse model of focal cerebral ischemia. These findings suggest that activation of the UPR in both neuronal and non‐neuronal cells, especially endothelial cells and astrocytes, may play an important role in and could be a potential therapeutic target for acute brain injuries. Main Points Brain injury induces endoplasmic reticulum (ER) stress responses in neuronal and non‐neuronal cells. ER stress responses after brain injury occur rapidly in neurons, most frequently in vascular endothelial cells, and relatively late in astrocytes.</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.24303</identifier><identifier>PMID: 36412235</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Animals ; Astrocytes ; Brain ; Brain Injuries - metabolism ; Brain injury ; Cell death ; Cell viability ; cerebral ischemia ; Endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Endoplasmic Reticulum Stress - physiology ; Endothelial Cells ; ER stress ; ERAI ; Fluorescence ; Green fluorescent protein ; Head injuries ; Homeostasis ; Ischemia ; Mice ; Neurodegenerative diseases ; Protein folding ; Proteins ; Signal transduction ; Stress response ; Therapeutic targets ; Time dependence ; Traumatic brain injury ; Unfolded Protein Response ; UPR</subject><ispartof>Glia, 2023-03, Vol.71 (3), p.667-681</ispartof><rights>2022 Wiley Periodicals LLC.</rights><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4233-e1324c4674ba74b6b968def1f444f260ef69bc84313c899b768a25cc657ec73a3</citedby><cites>FETCH-LOGICAL-c4233-e1324c4674ba74b6b968def1f444f260ef69bc84313c899b768a25cc657ec73a3</cites><orcidid>0000-0002-2113-0707 ; 0000-0002-8168-8710 ; 0000-0002-2210-0446 ; 0000-0001-6776-4660 ; 0000-0001-5963-046X ; 0000-0001-6213-1258</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36412235$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Qiyan</creatorcontrib><creatorcontrib>Takarada‐Iemata, Mika</creatorcontrib><creatorcontrib>Okitani, Nahoko</creatorcontrib><creatorcontrib>Tamatani, Takashi</creatorcontrib><creatorcontrib>Ishii, Hiroshi</creatorcontrib><creatorcontrib>Hattori, Tsuyoshi</creatorcontrib><creatorcontrib>Kiryu‐Seo, Sumiko</creatorcontrib><creatorcontrib>Kiyama, Hiroshi</creatorcontrib><creatorcontrib>Hori, Osamu</creatorcontrib><title>Brain injury triggers cell‐type‐specific and time‐dependent endoplasmic reticulum stress responses</title><title>Glia</title><addtitle>Glia</addtitle><description>The unfolded protein response (UPR) is a signal transduction network that responds to endoplasmic reticulum (ER) stress by coordinating protein homeostasis to maintain cell viability. The UPR can also trigger cell death when adaptive responses fail to improve protein homeostasis. Despite accumulating evidence suggesting that the UPR plays a role in neurodegenerative diseases and brain insults, our understanding of how ER stress is induced under neuropathological conditions is limited. Here, we investigated the cell‐ and time‐specific patterns of the ER stress response after brain injury using ER stress‐activated indicator (ERAI) mice, which enable monitoring of the UPR in vivo via increased fluorescence of a spliced XBP‐1 protein fused with the green fluorescent protein (GFP) variant Venus. Following cortical stab injury of ERAI mice, the GFP signal and number of GFP+ cells increased in the ipsilateral cortex throughout the observation period (6 h to 7 days post‐injury), confirming the induction of the UPR. GFP signals were observed in injured neurons early (from 6 h) after brain injury. However, non‐neuronal cells, mainly endothelial cells followed by astrocytes, accounted for the majority of GFP+ cells after brain injury. Similar results were obtained in a mouse model of focal cerebral ischemia. These findings suggest that activation of the UPR in both neuronal and non‐neuronal cells, especially endothelial cells and astrocytes, may play an important role in and could be a potential therapeutic target for acute brain injuries. Main Points Brain injury induces endoplasmic reticulum (ER) stress responses in neuronal and non‐neuronal cells. ER stress responses after brain injury occur rapidly in neurons, most frequently in vascular endothelial cells, and relatively late in astrocytes.</description><subject>Animals</subject><subject>Astrocytes</subject><subject>Brain</subject><subject>Brain Injuries - metabolism</subject><subject>Brain injury</subject><subject>Cell death</subject><subject>Cell viability</subject><subject>cerebral ischemia</subject><subject>Endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Endoplasmic Reticulum Stress - physiology</subject><subject>Endothelial Cells</subject><subject>ER stress</subject><subject>ERAI</subject><subject>Fluorescence</subject><subject>Green fluorescent protein</subject><subject>Head injuries</subject><subject>Homeostasis</subject><subject>Ischemia</subject><subject>Mice</subject><subject>Neurodegenerative diseases</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Signal transduction</subject><subject>Stress response</subject><subject>Therapeutic targets</subject><subject>Time dependence</subject><subject>Traumatic brain injury</subject><subject>Unfolded Protein Response</subject><subject>UPR</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgitbqxgeQATcijObWzGRZi1ah4EbXQyZzpqbMzZwZpDsfwWf0SUytunDhIhxy-PhJfkJOGL1klPKrZeXMJZeCih0yYlSnMWNC7ZIRTbWMmdTsgBwirihl4ZLskwOhJONcTEbk-dob10SuWQ1-HfXeLZfgMbJQVR9v7_26gzCwA-tKZyPTFFHv6s2ugA6aApo-CqPtKoN1AB56Z4dqqCPsPSCGBXZtg4BHZK80FcLx9xyTp9ubx9ldvHiY38-mi9hKLkQMTHBppUpkbsJRuVZpASUrpZQlVxRKpXObSsGETbXOE5UaPrFWTRKwiTBiTM63uZ1vXwbAPqsdbr5jGmgHzHgiNFWKaxbo2R-6agffhNcFpRKhNNeToC62yvoW0UOZdd7Vxq8zRrNN_9mm_-yr_4BPvyOHvIbil_4UHgDbgldXwfqfqGy-uJ9uQz8BQLiT8A</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Fan, Qiyan</creator><creator>Takarada‐Iemata, Mika</creator><creator>Okitani, Nahoko</creator><creator>Tamatani, Takashi</creator><creator>Ishii, Hiroshi</creator><creator>Hattori, Tsuyoshi</creator><creator>Kiryu‐Seo, Sumiko</creator><creator>Kiyama, Hiroshi</creator><creator>Hori, Osamu</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2113-0707</orcidid><orcidid>https://orcid.org/0000-0002-8168-8710</orcidid><orcidid>https://orcid.org/0000-0002-2210-0446</orcidid><orcidid>https://orcid.org/0000-0001-6776-4660</orcidid><orcidid>https://orcid.org/0000-0001-5963-046X</orcidid><orcidid>https://orcid.org/0000-0001-6213-1258</orcidid></search><sort><creationdate>202303</creationdate><title>Brain injury triggers cell‐type‐specific and time‐dependent endoplasmic reticulum stress responses</title><author>Fan, Qiyan ; Takarada‐Iemata, Mika ; Okitani, Nahoko ; Tamatani, Takashi ; Ishii, Hiroshi ; Hattori, Tsuyoshi ; Kiryu‐Seo, Sumiko ; Kiyama, Hiroshi ; Hori, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4233-e1324c4674ba74b6b968def1f444f260ef69bc84313c899b768a25cc657ec73a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Astrocytes</topic><topic>Brain</topic><topic>Brain Injuries - metabolism</topic><topic>Brain injury</topic><topic>Cell death</topic><topic>Cell viability</topic><topic>cerebral ischemia</topic><topic>Endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Endoplasmic Reticulum Stress - physiology</topic><topic>Endothelial Cells</topic><topic>ER stress</topic><topic>ERAI</topic><topic>Fluorescence</topic><topic>Green fluorescent protein</topic><topic>Head injuries</topic><topic>Homeostasis</topic><topic>Ischemia</topic><topic>Mice</topic><topic>Neurodegenerative diseases</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Signal transduction</topic><topic>Stress response</topic><topic>Therapeutic targets</topic><topic>Time dependence</topic><topic>Traumatic brain injury</topic><topic>Unfolded Protein Response</topic><topic>UPR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Qiyan</creatorcontrib><creatorcontrib>Takarada‐Iemata, Mika</creatorcontrib><creatorcontrib>Okitani, Nahoko</creatorcontrib><creatorcontrib>Tamatani, Takashi</creatorcontrib><creatorcontrib>Ishii, Hiroshi</creatorcontrib><creatorcontrib>Hattori, Tsuyoshi</creatorcontrib><creatorcontrib>Kiryu‐Seo, Sumiko</creatorcontrib><creatorcontrib>Kiyama, Hiroshi</creatorcontrib><creatorcontrib>Hori, Osamu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Qiyan</au><au>Takarada‐Iemata, Mika</au><au>Okitani, Nahoko</au><au>Tamatani, Takashi</au><au>Ishii, Hiroshi</au><au>Hattori, Tsuyoshi</au><au>Kiryu‐Seo, Sumiko</au><au>Kiyama, Hiroshi</au><au>Hori, Osamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain injury triggers cell‐type‐specific and time‐dependent endoplasmic reticulum stress responses</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2023-03</date><risdate>2023</risdate><volume>71</volume><issue>3</issue><spage>667</spage><epage>681</epage><pages>667-681</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><abstract>The unfolded protein response (UPR) is a signal transduction network that responds to endoplasmic reticulum (ER) stress by coordinating protein homeostasis to maintain cell viability. The UPR can also trigger cell death when adaptive responses fail to improve protein homeostasis. Despite accumulating evidence suggesting that the UPR plays a role in neurodegenerative diseases and brain insults, our understanding of how ER stress is induced under neuropathological conditions is limited. Here, we investigated the cell‐ and time‐specific patterns of the ER stress response after brain injury using ER stress‐activated indicator (ERAI) mice, which enable monitoring of the UPR in vivo via increased fluorescence of a spliced XBP‐1 protein fused with the green fluorescent protein (GFP) variant Venus. Following cortical stab injury of ERAI mice, the GFP signal and number of GFP+ cells increased in the ipsilateral cortex throughout the observation period (6 h to 7 days post‐injury), confirming the induction of the UPR. GFP signals were observed in injured neurons early (from 6 h) after brain injury. However, non‐neuronal cells, mainly endothelial cells followed by astrocytes, accounted for the majority of GFP+ cells after brain injury. Similar results were obtained in a mouse model of focal cerebral ischemia. These findings suggest that activation of the UPR in both neuronal and non‐neuronal cells, especially endothelial cells and astrocytes, may play an important role in and could be a potential therapeutic target for acute brain injuries. Main Points Brain injury induces endoplasmic reticulum (ER) stress responses in neuronal and non‐neuronal cells. ER stress responses after brain injury occur rapidly in neurons, most frequently in vascular endothelial cells, and relatively late in astrocytes.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36412235</pmid><doi>10.1002/glia.24303</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-2113-0707</orcidid><orcidid>https://orcid.org/0000-0002-8168-8710</orcidid><orcidid>https://orcid.org/0000-0002-2210-0446</orcidid><orcidid>https://orcid.org/0000-0001-6776-4660</orcidid><orcidid>https://orcid.org/0000-0001-5963-046X</orcidid><orcidid>https://orcid.org/0000-0001-6213-1258</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0894-1491
ispartof Glia, 2023-03, Vol.71 (3), p.667-681
issn 0894-1491
1098-1136
language eng
recordid cdi_proquest_miscellaneous_2739066291
source Wiley-Blackwell Read & Publish Collection
subjects Animals
Astrocytes
Brain
Brain Injuries - metabolism
Brain injury
Cell death
Cell viability
cerebral ischemia
Endoplasmic reticulum
Endoplasmic Reticulum - metabolism
Endoplasmic Reticulum Stress - physiology
Endothelial Cells
ER stress
ERAI
Fluorescence
Green fluorescent protein
Head injuries
Homeostasis
Ischemia
Mice
Neurodegenerative diseases
Protein folding
Proteins
Signal transduction
Stress response
Therapeutic targets
Time dependence
Traumatic brain injury
Unfolded Protein Response
UPR
title Brain injury triggers cell‐type‐specific and time‐dependent endoplasmic reticulum stress responses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T00%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20injury%20triggers%20cell%E2%80%90type%E2%80%90specific%20and%20time%E2%80%90dependent%20endoplasmic%20reticulum%20stress%20responses&rft.jtitle=Glia&rft.au=Fan,%20Qiyan&rft.date=2023-03&rft.volume=71&rft.issue=3&rft.spage=667&rft.epage=681&rft.pages=667-681&rft.issn=0894-1491&rft.eissn=1098-1136&rft_id=info:doi/10.1002/glia.24303&rft_dat=%3Cproquest_cross%3E2767369295%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4233-e1324c4674ba74b6b968def1f444f260ef69bc84313c899b768a25cc657ec73a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2767369295&rft_id=info:pmid/36412235&rfr_iscdi=true