Loading…
Highly Stable Hierarchically Structured All-Polymeric Lubricant-Infused Films Prevent Thrombosis and Repel Multidrug-Resistant Pathogens
Thrombus formation and infections caused by bacterial adhesion are the most common causes of failure in blood-contacting medical devices. Reducing the interaction of pathogens using repellent surfaces has proven to be a successful strategy in preventing device failure. However, designing scale-up me...
Saved in:
Published in: | ACS applied materials & interfaces 2022-12, Vol.14 (48), p.53535-53545 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Thrombus formation and infections caused by bacterial adhesion are the most common causes of failure in blood-contacting medical devices. Reducing the interaction of pathogens using repellent surfaces has proven to be a successful strategy in preventing device failure. However, designing scale-up methodologies to create large-scale repellent surfaces remains challenging. To address this need, we have created an all-polymeric lubricant-infused system using an industrially viable swelling-coagulation solvent (S-C) method. This induces hierarchically structured micro/nano features onto the surface, enabling improved lubricant infusion. Poly(3,3,3-trifluoropropylmethylsiloxane) (PTFS) was used as the lubricant of choice, a previously unexplored omniphobic nonvolatile silicone oil. This resulted in all-polymeric liquid-infused surfaces that are transparent and flexible with long-term stability. Repellent properties have been demonstrated using human whole blood and methicillin-resistant Staphylococcus aureus (MRSA) bacteria matrices, with lubricated surfaces showing 93% reduction in blood stains and 96.7% reduction in bacterial adherence. The developed material has the potential to prevent blood and pathogenic contamination for a range biomedical devices within healthcare settings. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.2c17309 |