Loading…
Thermal stresses in carbon-coated optical fibers at low temperature
The thermal stresses in carbon-coated optical fibers at low temperature have been analyzed. The thermally induced lateral pressure in the glass fiber would produce microbending loss. In order to minimize such a microbending loss, the thickness, Young's modulus, and Poisson's ratio of the c...
Saved in:
Published in: | Journal of materials research 1997-09, Vol.12 (9), p.2493-2498 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The thermal stresses in carbon-coated optical fibers at low temperature have been analyzed. The thermally induced lateral pressure in the glass fiber would produce microbending loss. In order to minimize such a microbending loss, the thickness, Young's modulus, and Poisson's ratio of the carbon coating should be decreased. On the other hand, the maximum thermal stress is the tangential stress in the carbon coating that occurs at the interface of the carbon coating and glass fiber. It was experimentally observed that if the maximum thermal stress is larger than the tensile strength of the carbon coating, the carbon coating will be broken along the axial direction. In order to minimize such a maximum thermal stress, the thickness of the carbon coating should be increased, but Young's modulus, thermal expansion coefficient, and Poisson's ratio of the carbon coating should be decreased. Finally, an optimal selection of the carbon coating for optical fiber is discussed. |
---|---|
ISSN: | 0884-2914 2044-5326 |
DOI: | 10.1557/JMR.1997.0329 |