Loading…
An Excursion to the Kolmogorov Random Strings
We study the sets of resource-bounded Kolmogorov random strings:Rt={x|Ct(n)(x)⩾|x|} fort(n)=2nk. We show that the class of sets that Turing reduce toRthas measure 0 inEXPwith respect to the resource-bounded measure introduced by Lutz. From this we conclude thatRtis not Turing-complete forEXP. This c...
Saved in:
Published in: | Journal of computer and system sciences 1997-06, Vol.54 (3), p.393-399 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the sets of resource-bounded Kolmogorov random strings:Rt={x|Ct(n)(x)⩾|x|} fort(n)=2nk. We show that the class of sets that Turing reduce toRthas measure 0 inEXPwith respect to the resource-bounded measure introduced by Lutz. From this we conclude thatRtis not Turing-complete forEXP. This contrasts with the resource-unbounded setting. ThereRis Turing-complete forco-RE. We show that the class of sets to whichRtbounded truth-table reduces, hasp2-measure 0 (therefore, measure 0 inEXP). This answers an open question of Lutz, giving a natural example of a language that is not weakly complete forEXPand that reduces to a measure 0 class inEXP. It follows that the sets that are ⩽pbbt-hard forEXPhavep2-measure 0. |
---|---|
ISSN: | 0022-0000 1090-2724 |
DOI: | 10.1006/jcss.1997.1484 |