Loading…

Direct writing of electronic and sensor materials using a laser transfer technique

We present a laser-based direct write technique termed matrix-assisted pulsed-laser evaporation direct write (MAPLE DW). This technique utilizes a laser transparent fused silica disc coated on one side with a composite matrix consisting of the material to be deposited mixed with a laser absorbing po...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2000-09, Vol.15 (9), p.1872-1875
Main Authors: Piqué, A., Chrisey, D. B., Fitz-Gerald, J. M., McGill, R. A., Auyeung, R. C. Y., Wu, H. D., Lakeou, S., Nguyen, Viet, Chung, R., Duignan, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a laser-based direct write technique termed matrix-assisted pulsed-laser evaporation direct write (MAPLE DW). This technique utilizes a laser transparent fused silica disc coated on one side with a composite matrix consisting of the material to be deposited mixed with a laser absorbing polymer. Absorption of laser radiation results in the decomposition of the polymer, which aids in transferring the solute to an acceptor substrate placed parallel to the matrix surface. Using MAPLE DW, complex patterns consisting of metal powders, ceramic powders, and polymer composites were transferred onto the surfaces of various types of substrates with
ISSN:0884-2914
2044-5326
DOI:10.1557/JMR.2000.0271