Loading…
Spontaneous Valley Polarization in a Ferromagnetic Fe(OH)2 Monolayer
At present, creating sizable spontaneous valley polarization is at the center of the study of valleytronics, which, however, is still a huge challenge. In this work, we determined that the ferromagnetic Fe(OH)2 monolayer of the hexagonal lattice is a highly appealing candidate for valleytronics by...
Saved in:
Published in: | The journal of physical chemistry letters 2022-12, Vol.13 (49), p.11543-11550 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | At present, creating sizable spontaneous valley polarization is at the center of the study of valleytronics, which, however, is still a huge challenge. In this work, we determined that the ferromagnetic Fe(OH)2 monolayer of the hexagonal lattice is a highly appealing candidate for valleytronics by using first-principles calculations in conjunction with tight-binding model analysis. In light of the simultaneous inversion symmetry breaking and time-reversal symmetry breaking, we illustrated that the strong spin–orbit coupling and robust ferromagnetic exchange interaction cause a spontaneous valley polarization as large as 67 meV for Fe(OH)2, indicative of room-temperature application. In addition, the physics of valley-selective circular dichroism, spin/valley Hall effects, and topological phase transition were also discussed. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.2c03177 |