Loading…
ipie: A Python-Based Auxiliary-Field Quantum Monte Carlo Program with Flexibility and Efficiency on CPUs and GPUs
We report the development of a python-based auxiliary-field quantum Monte Carlo (AFQMC) program, ipie, with preliminary timing benchmarks and new AFQMC results on the isomerization of [Cu2O2]2+. We demonstrate how implementations for both central and graphical processing units (CPUs and GPUs) are ac...
Saved in:
Published in: | Journal of chemical theory and computation 2023-01, Vol.19 (1), p.109-121 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report the development of a python-based auxiliary-field quantum Monte Carlo (AFQMC) program, ipie, with preliminary timing benchmarks and new AFQMC results on the isomerization of [Cu2O2]2+. We demonstrate how implementations for both central and graphical processing units (CPUs and GPUs) are achieved in ipie. We show an interface of ipie with PySCF as well as a straightforward template for adding new estimators to ipie. Our timing benchmarks against other C++ codes, QMCPACK and Dice, suggest that ipie is faster or similarly performing for all chemical systems considered on both CPUs and GPUs. Our results on [Cu2O2]2+ using selected configuration interaction trials show that it is possible to converge the ph-AFQMC isomerization energy between bis(μ-oxo) and μ-η2:η2 peroxo configurations to the exact known results for small basis sets with 105–106 determinants. We also report the isomerization energy with a quadruple-zeta basis set with an estimated error less than a kcal/mol, which involved 52 electrons and 290 orbitals with 106 determinants in the trial wave function. These results highlight the utility of ph-AFQMC and ipie for systems with modest strong correlation and large-scale dynamic correlation. |
---|---|
ISSN: | 1549-9618 1549-9626 |
DOI: | 10.1021/acs.jctc.2c00934 |