Loading…
On Backtracking Failure in Newton–GMRES Methods with a Demonstration for the Navier–Stokes Equations
In an earlier study of inexact Newton methods, we pointed out that certain counterintuitive behavior may occur when applying residual backtracking to the Navier–Stokes equations with heat and mass transport. Specifically, it was observed that a Newton–GMRES method globalized by backtracking (linesea...
Saved in:
Published in: | Journal of computational physics 2002-08, Vol.180 (2), p.549-558 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In an earlier study of inexact Newton methods, we pointed out that certain counterintuitive behavior may occur when applying residual backtracking to the Navier–Stokes equations with heat and mass transport. Specifically, it was observed that a Newton–GMRES method globalized by backtracking (linesearch, damping) may be less robust when high accuracy is required of each linear solve in the Newton sequence than when less accuracy is required. In this brief discussion, we offer a possible explanation for this phenomenon, together with an illustrative numerical experiment involving the Navier–Stokes equations. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1006/jcph.2002.7102 |