Loading…
Microstructural evolution and growth velocity-undercooling relationships in the systems Cu, Cu-O and Cu-Sn at high undercooling
A melt encasement (fluxing) technique has been used to systematically study the velocity-undercooling relationship in samples of Cu and Cu-O and Cu-3 wt% Sn at undercoolings up to 250 K. In pure Cu the solidification velocity increased smoothly with undercooling up to a maximum of 97 m s-1. No evide...
Saved in:
Published in: | Journal of materials science 2000-01, Vol.35 (6), p.1365-1373 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A melt encasement (fluxing) technique has been used to systematically study the velocity-undercooling relationship in samples of Cu and Cu-O and Cu-3 wt% Sn at undercoolings up to 250 K. In pure Cu the solidification velocity increased smoothly with undercooling up to a maximum of 97 m s-1. No evidence of grain refinement was found in any of the as-solidified samples. However, in Cu doped with >200 ppm O we found that samples undercooled by more than 190 K had a grain refined microstructure and that this corresponded with a clear discontinuity in the velocity-undercooling curve. Microstructural evidence in these samples is indicative of dendritic fragmentation having occurred. In Cu-Sn grain refinement was observed at the highest undercoolings (greater than 190 K in Cu-3 wt% Sn) but without the spherical substructure seen to accompany grain refinement in Cu-O alloys. Microstructural analysis using light microscopy, texture analysis and microhardness measurements reveals that recrystallisation accompanies the grain refinement at high undercoolings. Furthermore, at undercoolings between 110 K and 190 K, a high density of subgrains are seen within the microstructure which indicate the occurrence of recovery, a phenomenon previously unreported in samples solidified from highly undercooled melts. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1023/A:1004782107849 |