Loading…
Analytical study and numerical experiments for degenerate scale problems in the boundary element method for two-dimensional elasticity
For a plane elasticity problem, the boundary integral equation approach has been shown to yield a non‐unique solution when geometry size is equal to a degenerate scale. In this paper, the degenerate scale problem in the boundary element method (BEM) is analytically studied using the method of stress...
Saved in:
Published in: | International journal for numerical methods in engineering 2002-08, Vol.54 (12), p.1669-1681 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For a plane elasticity problem, the boundary integral equation approach has been shown to yield a non‐unique solution when geometry size is equal to a degenerate scale. In this paper, the degenerate scale problem in the boundary element method (BEM) is analytically studied using the method of stress function. For the elliptic domain problem, the numerical difficulty of the degenerate scale can be solved by using the hypersingular formulation instead of using the singular formulation in the dual BEM. A simple example is shown to demonstrate the failure using the singular integral equations of dual BEM. It is found that the degenerate scale also depends on the Poisson's ratio. By employing the hypersingular formulation in the dual BEM, no degenerate scale occurs since a zero eigenvalue is not embedded in the influence matrix for any case. Copyright © 2002 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0029-5981 1097-0207 |
DOI: | 10.1002/nme.476 |