Loading…
Tinware-Inspired Aerobic Surface-Initiated Controlled Radical Polymerization (SI-Sn0CRP) for Biocompatible Surface Engineering
Surface anchored polymer brushes prepared by surface-initiated controlled radical polymerization (SI-CRP) have raised considerable interest in biomaterials and bioengineering. However, undesired residues of noxious transition metal catalysts critically restrain their widespread biomedical applicatio...
Saved in:
Published in: | ACS macro letters 2023-01, Vol.12 (1), p.71-76 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Surface anchored polymer brushes prepared by surface-initiated controlled radical polymerization (SI-CRP) have raised considerable interest in biomaterials and bioengineering. However, undesired residues of noxious transition metal catalysts critically restrain their widespread biomedical applications. Herein, we present a robust and biocompatible surface-initiated controlled radical polymerization catalyzed by a Sn(0) sheet (SI-Sn0CRP) under ambient conditions. Through this approach, microliter volumes of vinyl monomers with diverse functions (heterocyclic, ionic, hydrophilic, and hydrophobic) could be efficiently converted to homogeneous polymer brushes. The excellent controllability of SI-Sn0CRP strategy is further demonstrated by the exquisite fabrication of predetermined block and patterned polymer brushes through chain extension and photolithography, respectively. Additionally, in virtue of intrinsic biocompatibility of Sn, the resultant polymer brushes present transcendent affinity toward blood and cell, in marked contrast to those of copper-based approaches. This strategy could provide an avenue for the controllable fabrication of biocompatible polymer brushes toward biological applications. |
---|---|
ISSN: | 2161-1653 2161-1653 |
DOI: | 10.1021/acsmacrolett.2c00556 |