Loading…
Numerical study of singularity formation in a class of Euler and Navier–Stokes flows
We study numerically a class of stretched solutions of the three-dimensional Euler and Navier–Stokes equations identified by Gibbon, Fokas, and Doering (1999). Pseudo-spectral computations of a Euler flow starting from a simple smooth initial condition suggests a breakdown in finite time. Moreover,...
Saved in:
Published in: | Physics of fluids (1994) 2000-12, Vol.12 (12), p.3181-3194 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study numerically a class of stretched solutions of the three-dimensional Euler and Navier–Stokes equations identified by Gibbon, Fokas, and Doering (1999). Pseudo-spectral computations of a Euler flow starting from a simple smooth initial condition suggests a breakdown in finite time. Moreover, this singularity apparently persists in the Navier–Stokes case. Independent evidence for the existence of a singularity is given by a Taylor series expansion in time. The mechanism underlying the formation of this singularity is the two-dimensionalization of the vorticity vector under strong compression; that is, the intensification of the azimuthal components associated with the diminishing of the axial component. It is suggested that the hollowing of the vortex accompanying this phenomenon may have some relevance to studies in vortex breakdown. |
---|---|
ISSN: | 1070-6631 1089-7666 |
DOI: | 10.1063/1.1321256 |