Loading…

A Biomimetic Bilayer Hydrogel Actuator Based on Thermoresponsive Gelatin Methacryloyl–Poly(N‑isopropylacrylamide) Hydrogel with Three-Dimensional Printability

Development of hydrogel-based actuators with programmable deformation is an important topic that arouses much attention in fundamental and applied research. Most of these actuators are nonbiodegradable or work under nonphysiological conditions. Herein, a temperature-responsive and biodegradable gela...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2023-02, Vol.15 (4), p.5798-5810
Main Authors: Huang, Yu-Chen, Cheng, Qian-Pu, Jeng, U-Ser, Hsu, Shan-hui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Development of hydrogel-based actuators with programmable deformation is an important topic that arouses much attention in fundamental and applied research. Most of these actuators are nonbiodegradable or work under nonphysiological conditions. Herein, a temperature-responsive and biodegradable gelatin methacryloyl (GelMA)–poly­(N-isopropylacrylamide) hydrogel (i.e., GN hydrogel) network was explored as the active layer of a bilayer actuator. Small-angle X-ray scattering (SAXS) revealed that the GN hydrogel formed a mesoglobular structure (∼230 Å) upon a thermally induced phase transition. Rheological data supported that the GN hydrogel possessed 3D printability and tunable mechanical properties. A bilayer hydrogel actuator composed of active GN and passive GelMA layers was optimized by varying the layer thickness and compositions to achieve large, reproducible, and anisotropic bending with a curvature of ∼5.5 cm–1. Different patterns of the active layer were designed for actuation in programmable control. The 3D printed GN hydrogel constructs showed significant volume reduction (∼25–60% depending on construct design) at 37 °C with the resolution enhanced by the thermo-triggered actuation, while they were able to fully reswell at room temperature. A more intricate 3D printed butterfly actuator demonstrated the ability to mimic the wing movement through thermoresponsiveness. Furthermore, myoblasts laden in the GN hydrogel exhibited significant proliferation of ∼376% in 14 days. This study provides a new fabrication approach for developing biomimetic devices, artificial muscles, and soft robotics for biomedical applications.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c18961