Loading…

Integration of metabolomics and transcriptomics analyses reveals sphingosine-1-phosphate-mediated S1PR2/PI3K/Akt pathway involved in Talaromyces marneffei infection of macrophages

Talaromycosis is a fatal mycosis caused by the thermally dimorphic fungus Talaromyces marneffei (T. marneffei). The pathogenic mechanisms of talaromycosis are still poorly understood. This work combined metabolomics, transcriptomics, and verification experiments in vivo and in vitro to detect metabo...

Full description

Saved in:
Bibliographic Details
Published in:Microbial pathogenesis 2023-02, Vol.175, p.105985-105985, Article 105985
Main Authors: Yang, Lu-Hui, Dong, Rong-Jing, Lu, You-Wang, Wang, Hong-Mei, Kuang, Yi-Qun, Wang, Rui-Rui, Li, Yu-Ye
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Talaromycosis is a fatal mycosis caused by the thermally dimorphic fungus Talaromyces marneffei (T. marneffei). The pathogenic mechanisms of talaromycosis are still poorly understood. This work combined metabolomics, transcriptomics, and verification experiments in vivo and in vitro to detect metabolic profiles and differentially expressed genes (DEGs) in T. marneffei infected and uninfected macrophages to explore possible pathogenesis and underlying mechanisms. A total of 256 differential metabolites (117 up-regulated and 148 down-regulated) and 1320 DEGs (1286 up-regulated and 34 down-regulated) were identified between the two groups. Integrative metabolomics and transcriptomics analysis showed sphingolipid signaling pathway is the most influential. Verification experiments showed that compared with the control group, the production of sphingosine-1-phosphate (S1P) and the expression of the S1PR1, S1PR2, phosphor-PI3K, and phosphor-Akt genes involved in the sphingolipid signaling pathway have significantly increased in the T. marneffei infection group (p 
ISSN:0882-4010
1096-1208
DOI:10.1016/j.micpath.2023.105985