Loading…

A spline collocation method for parabolic pseudodifferential equations

The purpose of this paper is to examine a boundary element collocation method for some parabolic pseudodifferential equations. The basic model problem for our investigation is the two-dimensional heat conduction problem with vanishing initial condition and a given Neumann or Dirichlet type boundary...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2002-03, Vol.140 (1), p.41-61
Main Author: Anttila, Juha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The purpose of this paper is to examine a boundary element collocation method for some parabolic pseudodifferential equations. The basic model problem for our investigation is the two-dimensional heat conduction problem with vanishing initial condition and a given Neumann or Dirichlet type boundary condition. Certain choices of the representation formula for the heat potential yield boundary integral equations of the first kind, namely the single layer and the hypersingular heat operator equations. Both of these operators, in particular, are covered by the class of parabolic pseudodifferential operators under consideration. Moreover, the spatial domain is allowed to have a general smooth boundary curve. As trial functions the tensor products of the smoothest spline functions of odd degree (space) and continuous piecewise linear splines (time) are used. Stability and convergence of the method is proved in some appropriate anisotropic Sobolev spaces.
ISSN:0377-0427
1879-1778
DOI:10.1016/S0377-0427(01)00401-0