Loading…

A spline collocation method for parabolic pseudodifferential equations

The purpose of this paper is to examine a boundary element collocation method for some parabolic pseudodifferential equations. The basic model problem for our investigation is the two-dimensional heat conduction problem with vanishing initial condition and a given Neumann or Dirichlet type boundary...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2002-03, Vol.140 (1), p.41-61
Main Author: Anttila, Juha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c363t-30be7b57cad31205a126d2de48dbe18e4a15af7c7e5026e6ab72950988ed4d5a3
container_end_page 61
container_issue 1
container_start_page 41
container_title Journal of computational and applied mathematics
container_volume 140
creator Anttila, Juha
description The purpose of this paper is to examine a boundary element collocation method for some parabolic pseudodifferential equations. The basic model problem for our investigation is the two-dimensional heat conduction problem with vanishing initial condition and a given Neumann or Dirichlet type boundary condition. Certain choices of the representation formula for the heat potential yield boundary integral equations of the first kind, namely the single layer and the hypersingular heat operator equations. Both of these operators, in particular, are covered by the class of parabolic pseudodifferential operators under consideration. Moreover, the spatial domain is allowed to have a general smooth boundary curve. As trial functions the tensor products of the smoothest spline functions of odd degree (space) and continuous piecewise linear splines (time) are used. Stability and convergence of the method is proved in some appropriate anisotropic Sobolev spaces.
doi_str_mv 10.1016/S0377-0427(01)00401-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27714729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042701004010</els_id><sourcerecordid>27714729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-30be7b57cad31205a126d2de48dbe18e4a15af7c7e5026e6ab72950988ed4d5a3</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoOI7-BKEbRRfVl7ZpOiuRwVFhwIW6Dq_JK0YyTSdpBf-9nQ906eptzrmXdxk753DDgZe3r5BLmUKRySvg1wAF8BQO2IRXcpZyKatDNvlFjtlJjJ8AUM54MWGL-yR2zraUaO-c19hb3yYr6j-8SRofkg4D1t5ZnXSRBuONbRoK1PYWXULrYSvEU3bUoIt0tr9T9r54eJs_pcuXx-f5_TLVeZn3aQ41yVpIjSbnGQjkWWkyQ0VlauIVFcgFNlJLEpCVVGIts5mAWVWRKYzAfMoud7ld8OuBYq9WNmpyDlvyQ1SZlLwYnREUO1AHH2OgRnXBrjB8Kw5qs5rarqY2kyjgaruagtG72Bdg1OiagK228U_OhQBZbPLvdhyN335ZCipqS60mYwPpXhlv_2n6AW3vgcU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27714729</pqid></control><display><type>article</type><title>A spline collocation method for parabolic pseudodifferential equations</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Anttila, Juha</creator><creatorcontrib>Anttila, Juha</creatorcontrib><description>The purpose of this paper is to examine a boundary element collocation method for some parabolic pseudodifferential equations. The basic model problem for our investigation is the two-dimensional heat conduction problem with vanishing initial condition and a given Neumann or Dirichlet type boundary condition. Certain choices of the representation formula for the heat potential yield boundary integral equations of the first kind, namely the single layer and the hypersingular heat operator equations. Both of these operators, in particular, are covered by the class of parabolic pseudodifferential operators under consideration. Moreover, the spatial domain is allowed to have a general smooth boundary curve. As trial functions the tensor products of the smoothest spline functions of odd degree (space) and continuous piecewise linear splines (time) are used. Stability and convergence of the method is proved in some appropriate anisotropic Sobolev spaces.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/S0377-0427(01)00401-0</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropic pseudodifferential operators ; Boundary integral ; Collocation ; Collocation methods ; Computational techniques ; Exact sciences and technology ; Mathematical methods in physics ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Ordinary differential equations ; Physics ; Sciences and techniques of general use</subject><ispartof>Journal of computational and applied mathematics, 2002-03, Vol.140 (1), p.41-61</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c363t-30be7b57cad31205a126d2de48dbe18e4a15af7c7e5026e6ab72950988ed4d5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13550749$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Anttila, Juha</creatorcontrib><title>A spline collocation method for parabolic pseudodifferential equations</title><title>Journal of computational and applied mathematics</title><description>The purpose of this paper is to examine a boundary element collocation method for some parabolic pseudodifferential equations. The basic model problem for our investigation is the two-dimensional heat conduction problem with vanishing initial condition and a given Neumann or Dirichlet type boundary condition. Certain choices of the representation formula for the heat potential yield boundary integral equations of the first kind, namely the single layer and the hypersingular heat operator equations. Both of these operators, in particular, are covered by the class of parabolic pseudodifferential operators under consideration. Moreover, the spatial domain is allowed to have a general smooth boundary curve. As trial functions the tensor products of the smoothest spline functions of odd degree (space) and continuous piecewise linear splines (time) are used. Stability and convergence of the method is proved in some appropriate anisotropic Sobolev spaces.</description><subject>Anisotropic pseudodifferential operators</subject><subject>Boundary integral</subject><subject>Collocation</subject><subject>Collocation methods</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAURYMoOI7-BKEbRRfVl7ZpOiuRwVFhwIW6Dq_JK0YyTSdpBf-9nQ906eptzrmXdxk753DDgZe3r5BLmUKRySvg1wAF8BQO2IRXcpZyKatDNvlFjtlJjJ8AUM54MWGL-yR2zraUaO-c19hb3yYr6j-8SRofkg4D1t5ZnXSRBuONbRoK1PYWXULrYSvEU3bUoIt0tr9T9r54eJs_pcuXx-f5_TLVeZn3aQ41yVpIjSbnGQjkWWkyQ0VlauIVFcgFNlJLEpCVVGIts5mAWVWRKYzAfMoud7ld8OuBYq9WNmpyDlvyQ1SZlLwYnREUO1AHH2OgRnXBrjB8Kw5qs5rarqY2kyjgaruagtG72Bdg1OiagK228U_OhQBZbPLvdhyN335ZCipqS60mYwPpXhlv_2n6AW3vgcU</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Anttila, Juha</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20020301</creationdate><title>A spline collocation method for parabolic pseudodifferential equations</title><author>Anttila, Juha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-30be7b57cad31205a126d2de48dbe18e4a15af7c7e5026e6ab72950988ed4d5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Anisotropic pseudodifferential operators</topic><topic>Boundary integral</topic><topic>Collocation</topic><topic>Collocation methods</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anttila, Juha</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anttila, Juha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A spline collocation method for parabolic pseudodifferential equations</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2002-03-01</date><risdate>2002</risdate><volume>140</volume><issue>1</issue><spage>41</spage><epage>61</epage><pages>41-61</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>The purpose of this paper is to examine a boundary element collocation method for some parabolic pseudodifferential equations. The basic model problem for our investigation is the two-dimensional heat conduction problem with vanishing initial condition and a given Neumann or Dirichlet type boundary condition. Certain choices of the representation formula for the heat potential yield boundary integral equations of the first kind, namely the single layer and the hypersingular heat operator equations. Both of these operators, in particular, are covered by the class of parabolic pseudodifferential operators under consideration. Moreover, the spatial domain is allowed to have a general smooth boundary curve. As trial functions the tensor products of the smoothest spline functions of odd degree (space) and continuous piecewise linear splines (time) are used. Stability and convergence of the method is proved in some appropriate anisotropic Sobolev spaces.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-0427(01)00401-0</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2002-03, Vol.140 (1), p.41-61
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_27714729
source ScienceDirect Freedom Collection 2022-2024
subjects Anisotropic pseudodifferential operators
Boundary integral
Collocation
Collocation methods
Computational techniques
Exact sciences and technology
Mathematical methods in physics
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Ordinary differential equations
Physics
Sciences and techniques of general use
title A spline collocation method for parabolic pseudodifferential equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A17%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20spline%20collocation%20method%20for%20parabolic%20pseudodifferential%20equations&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Anttila,%20Juha&rft.date=2002-03-01&rft.volume=140&rft.issue=1&rft.spage=41&rft.epage=61&rft.pages=41-61&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/S0377-0427(01)00401-0&rft_dat=%3Cproquest_cross%3E27714729%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-30be7b57cad31205a126d2de48dbe18e4a15af7c7e5026e6ab72950988ed4d5a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27714729&rft_id=info:pmid/&rfr_iscdi=true