Loading…
A spline collocation method for parabolic pseudodifferential equations
The purpose of this paper is to examine a boundary element collocation method for some parabolic pseudodifferential equations. The basic model problem for our investigation is the two-dimensional heat conduction problem with vanishing initial condition and a given Neumann or Dirichlet type boundary...
Saved in:
Published in: | Journal of computational and applied mathematics 2002-03, Vol.140 (1), p.41-61 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-30be7b57cad31205a126d2de48dbe18e4a15af7c7e5026e6ab72950988ed4d5a3 |
container_end_page | 61 |
container_issue | 1 |
container_start_page | 41 |
container_title | Journal of computational and applied mathematics |
container_volume | 140 |
creator | Anttila, Juha |
description | The purpose of this paper is to examine a boundary element collocation method for some parabolic pseudodifferential equations. The basic model problem for our investigation is the two-dimensional heat conduction problem with vanishing initial condition and a given Neumann or Dirichlet type boundary condition. Certain choices of the representation formula for the heat potential yield boundary integral equations of the first kind, namely the single layer and the hypersingular heat operator equations. Both of these operators, in particular, are covered by the class of parabolic pseudodifferential operators under consideration. Moreover, the spatial domain is allowed to have a general smooth boundary curve. As trial functions the tensor products of the smoothest spline functions of odd degree (space) and continuous piecewise linear splines (time) are used. Stability and convergence of the method is proved in some appropriate anisotropic Sobolev spaces. |
doi_str_mv | 10.1016/S0377-0427(01)00401-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27714729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042701004010</els_id><sourcerecordid>27714729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-30be7b57cad31205a126d2de48dbe18e4a15af7c7e5026e6ab72950988ed4d5a3</originalsourceid><addsrcrecordid>eNqFkE1LxDAURYMoOI7-BKEbRRfVl7ZpOiuRwVFhwIW6Dq_JK0YyTSdpBf-9nQ906eptzrmXdxk753DDgZe3r5BLmUKRySvg1wAF8BQO2IRXcpZyKatDNvlFjtlJjJ8AUM54MWGL-yR2zraUaO-c19hb3yYr6j-8SRofkg4D1t5ZnXSRBuONbRoK1PYWXULrYSvEU3bUoIt0tr9T9r54eJs_pcuXx-f5_TLVeZn3aQ41yVpIjSbnGQjkWWkyQ0VlauIVFcgFNlJLEpCVVGIts5mAWVWRKYzAfMoud7ld8OuBYq9WNmpyDlvyQ1SZlLwYnREUO1AHH2OgRnXBrjB8Kw5qs5rarqY2kyjgaruagtG72Bdg1OiagK228U_OhQBZbPLvdhyN335ZCipqS60mYwPpXhlv_2n6AW3vgcU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27714729</pqid></control><display><type>article</type><title>A spline collocation method for parabolic pseudodifferential equations</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Anttila, Juha</creator><creatorcontrib>Anttila, Juha</creatorcontrib><description>The purpose of this paper is to examine a boundary element collocation method for some parabolic pseudodifferential equations. The basic model problem for our investigation is the two-dimensional heat conduction problem with vanishing initial condition and a given Neumann or Dirichlet type boundary condition. Certain choices of the representation formula for the heat potential yield boundary integral equations of the first kind, namely the single layer and the hypersingular heat operator equations. Both of these operators, in particular, are covered by the class of parabolic pseudodifferential operators under consideration. Moreover, the spatial domain is allowed to have a general smooth boundary curve. As trial functions the tensor products of the smoothest spline functions of odd degree (space) and continuous piecewise linear splines (time) are used. Stability and convergence of the method is proved in some appropriate anisotropic Sobolev spaces.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/S0377-0427(01)00401-0</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anisotropic pseudodifferential operators ; Boundary integral ; Collocation ; Collocation methods ; Computational techniques ; Exact sciences and technology ; Mathematical methods in physics ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Ordinary differential equations ; Physics ; Sciences and techniques of general use</subject><ispartof>Journal of computational and applied mathematics, 2002-03, Vol.140 (1), p.41-61</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c363t-30be7b57cad31205a126d2de48dbe18e4a15af7c7e5026e6ab72950988ed4d5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13550749$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Anttila, Juha</creatorcontrib><title>A spline collocation method for parabolic pseudodifferential equations</title><title>Journal of computational and applied mathematics</title><description>The purpose of this paper is to examine a boundary element collocation method for some parabolic pseudodifferential equations. The basic model problem for our investigation is the two-dimensional heat conduction problem with vanishing initial condition and a given Neumann or Dirichlet type boundary condition. Certain choices of the representation formula for the heat potential yield boundary integral equations of the first kind, namely the single layer and the hypersingular heat operator equations. Both of these operators, in particular, are covered by the class of parabolic pseudodifferential operators under consideration. Moreover, the spatial domain is allowed to have a general smooth boundary curve. As trial functions the tensor products of the smoothest spline functions of odd degree (space) and continuous piecewise linear splines (time) are used. Stability and convergence of the method is proved in some appropriate anisotropic Sobolev spaces.</description><subject>Anisotropic pseudodifferential operators</subject><subject>Boundary integral</subject><subject>Collocation</subject><subject>Collocation methods</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAURYMoOI7-BKEbRRfVl7ZpOiuRwVFhwIW6Dq_JK0YyTSdpBf-9nQ906eptzrmXdxk753DDgZe3r5BLmUKRySvg1wAF8BQO2IRXcpZyKatDNvlFjtlJjJ8AUM54MWGL-yR2zraUaO-c19hb3yYr6j-8SRofkg4D1t5ZnXSRBuONbRoK1PYWXULrYSvEU3bUoIt0tr9T9r54eJs_pcuXx-f5_TLVeZn3aQ41yVpIjSbnGQjkWWkyQ0VlauIVFcgFNlJLEpCVVGIts5mAWVWRKYzAfMoud7ld8OuBYq9WNmpyDlvyQ1SZlLwYnREUO1AHH2OgRnXBrjB8Kw5qs5rarqY2kyjgaruagtG72Bdg1OiagK228U_OhQBZbPLvdhyN335ZCipqS60mYwPpXhlv_2n6AW3vgcU</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Anttila, Juha</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20020301</creationdate><title>A spline collocation method for parabolic pseudodifferential equations</title><author>Anttila, Juha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-30be7b57cad31205a126d2de48dbe18e4a15af7c7e5026e6ab72950988ed4d5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Anisotropic pseudodifferential operators</topic><topic>Boundary integral</topic><topic>Collocation</topic><topic>Collocation methods</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anttila, Juha</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anttila, Juha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A spline collocation method for parabolic pseudodifferential equations</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2002-03-01</date><risdate>2002</risdate><volume>140</volume><issue>1</issue><spage>41</spage><epage>61</epage><pages>41-61</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>The purpose of this paper is to examine a boundary element collocation method for some parabolic pseudodifferential equations. The basic model problem for our investigation is the two-dimensional heat conduction problem with vanishing initial condition and a given Neumann or Dirichlet type boundary condition. Certain choices of the representation formula for the heat potential yield boundary integral equations of the first kind, namely the single layer and the hypersingular heat operator equations. Both of these operators, in particular, are covered by the class of parabolic pseudodifferential operators under consideration. Moreover, the spatial domain is allowed to have a general smooth boundary curve. As trial functions the tensor products of the smoothest spline functions of odd degree (space) and continuous piecewise linear splines (time) are used. Stability and convergence of the method is proved in some appropriate anisotropic Sobolev spaces.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-0427(01)00401-0</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0377-0427 |
ispartof | Journal of computational and applied mathematics, 2002-03, Vol.140 (1), p.41-61 |
issn | 0377-0427 1879-1778 |
language | eng |
recordid | cdi_proquest_miscellaneous_27714729 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Anisotropic pseudodifferential operators Boundary integral Collocation Collocation methods Computational techniques Exact sciences and technology Mathematical methods in physics Mathematics Numerical analysis Numerical analysis. Scientific computation Ordinary differential equations Physics Sciences and techniques of general use |
title | A spline collocation method for parabolic pseudodifferential equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A17%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20spline%20collocation%20method%20for%20parabolic%20pseudodifferential%20equations&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Anttila,%20Juha&rft.date=2002-03-01&rft.volume=140&rft.issue=1&rft.spage=41&rft.epage=61&rft.pages=41-61&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/S0377-0427(01)00401-0&rft_dat=%3Cproquest_cross%3E27714729%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-30be7b57cad31205a126d2de48dbe18e4a15af7c7e5026e6ab72950988ed4d5a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27714729&rft_id=info:pmid/&rfr_iscdi=true |