Loading…

Sulfuric Acid Production on Europa: The Radiolysis of Sulfur in Water Ice

Europa's surface is chemically altered by radiolysis from energetic charged particle bombardment. It has been suggested that hydrated sulfuric acid (H2SO4·nH2O) is a major surface species and is part of a radiolytic sulfur cycle, where a dynamic equilibrium exists between continuous production...

Full description

Saved in:
Bibliographic Details
Published in:Icarus (New York, N.Y. 1962) N.Y. 1962), 2002-06, Vol.157 (2), p.456-463
Main Authors: Carlson, R.W., Anderson, M.S., Johnson, R.E., Schulman, M.B., Yavrouian, A.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Europa's surface is chemically altered by radiolysis from energetic charged particle bombardment. It has been suggested that hydrated sulfuric acid (H2SO4·nH2O) is a major surface species and is part of a radiolytic sulfur cycle, where a dynamic equilibrium exists between continuous production and destruction of sulfur polymers Sx, sulfur dioxide SO2, hydrogen sulfide H2S, and H2SO4·nH2O. We measured the rate of sulfate anion production for cyclo-octal sulfur grains in frozen water at temperatures, energies, and dose rates appropriate for Europa using energetic electrons. The measured rate is GMixture(SO42−)=fSulfur (r0/r)βG1 molecules (100 eV)−1, where fSulfur is the sulfur weight fraction, r is the grain radius, r0=50 μm, β≈1.9, and G1=0.4±0.1. Equilibrium column densities N are derived for Europa's surface and follow the ordering N(H2SO4) » N(S)>N(SO2)>N(H2S). The lifetime of a sulfur atom on Europa's surface for radiolysis to H2SO4 is τ(−S)=120(r/r0)β years. Rapid radiolytic processing hides the identity of the original source of the sulfurous material, but Iogenic plasma ion implantation and an acidic or salty ocean are candidate sources. Sulfate salts, if present, would be decomposed in
ISSN:0019-1035
1090-2643
DOI:10.1006/icar.2002.6858