Loading…
ASYMPTOTIC APPROACH FOR NON-LINEAR PERIODICAL VIBRATIONS OF CONTINUOUS STRUCTURES
An asymptotic approach for determining periodic solutions of non-linear vibration problems of continuous structures (such as rods, beams, plates, etc.) is proposed. Starting with the well-known perturbation technique, the independent displacement and frequency is expanded in a power series of a natu...
Saved in:
Published in: | Journal of sound and vibration 2002-01, Vol.249 (3), p.465-481 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An asymptotic approach for determining periodic solutions of non-linear vibration problems of continuous structures (such as rods, beams, plates, etc.) is proposed. Starting with the well-known perturbation technique, the independent displacement and frequency is expanded in a power series of a natural small parameter. It leads to infinite systems of interconnected non-linear algebraic equations governing the relationships between modes, amplitudes and frequencies. A non-trivial asymptotic technique, based on the introduction of an artificial small parameter is used to solve the equations. An advantage of the procedure is the possibility to take into account a number of vibration modes. As examples, free longitudinal vibrations of a rod and lateral vibrations of a beam under cubically non-linear restoring force are considered. Resonance interactions between different modes are investigated and asymptotic formulae for corresponding backbone curves are derived. |
---|---|
ISSN: | 0022-460X 1095-8568 |
DOI: | 10.1006/jsvi.2001.3878 |