Loading…
α‑Synuclein Aggregation Inhibitory Procerolides and Diphenylalkanes from the Ascidian Polycarpa procera
The aggregation of the neuronal protein α-synuclein (α-syn) is intrinsically linked to the development and progression of Parkinson’s disease (PD). Recently we screened the MeOH extracts from 283 marine invertebrates for α-syn binding activity using an affinity mass spectrometry (MS) binding assay a...
Saved in:
Published in: | Journal of natural products (Washington, D.C.) D.C.), 2023-03, Vol.86 (3), p.533-540 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aggregation of the neuronal protein α-synuclein (α-syn) is intrinsically linked to the development and progression of Parkinson’s disease (PD). Recently we screened the MeOH extracts from 283 marine invertebrates for α-syn binding activity using an affinity mass spectrometry (MS) binding assay and found that the extract of the ascidian Polycarpa procera displayed activity. A subsequent bioassay-guided purification led to the isolation of one new α-syn aggregation inhibitory butenolide procerolide E (3) and one new α-syn aggregation inhibitory diphenylbutyrate methyl procerolate A (5). Herein we report the structure elucidation of procerolide E (3) and methylprocerolate A (5) and α-syn aggregation inhibitory activity of procerolides C-E (1–3), methyl procerolate A (5) and procerone A (4). We also report the α-syn binding activity of 3-bromo-4-methoxyphenylacetamide (6) and a synthetic butenolide library, which has allowed us to determine α-syn aggregation inhibitory structure-activity relationships for this class of compounds. |
---|---|
ISSN: | 0163-3864 1520-6025 |
DOI: | 10.1021/acs.jnatprod.2c01140 |