Loading…

Wet Removal of Pollutants from Gaussian Plumes: Basic Linear Equations and Computational Approaches

Over the past several years, a number of Gaussian plume–based computer codes have been produced. These codes describe transport, transformation, and deposition of air pollutants under a variety of atmospheric conditions. For a number of reasons, there is increasing interest in simulating wet-deposit...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied meteorology (1988) 2002-09, Vol.41 (9), p.905-918
Main Author: Hales, J. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Over the past several years, a number of Gaussian plume–based computer codes have been produced. These codes describe transport, transformation, and deposition of air pollutants under a variety of atmospheric conditions. For a number of reasons, there is increasing interest in simulating wet-deposition processes in such codes, and several approaches have been applied to this end. Some of these approaches involve elaborate solubility and chemistry characterizations, but many of them resort to a diversity of approximate techniques. This paper presents a procedure that can be used as a practical guide to improve many of these formulations, especially for the case of pollutant gases. The approach takes the form of a set of analytical equations that correspond to five kinds of Gaussian plume formulations: standard bivariate-normal point-source plumes, line-source plumes, unrestricted instantaneous puffs, and point-source plumes and puffs that experience reflection from inversion layers aloft. These equations represent the concentration of scavenged pollutants in falling raindrops and are similar in complexity to their associated gas-phase plume equations. They are strictly linear, thus allowing superposition of wet-deposition contributions by multiple plumes.
ISSN:0894-8763
1520-0450
DOI:10.1175/1520-0450(2002)041<0905:WROPFG>2.0.CO;2