Loading…
Wet Removal of Pollutants from Gaussian Plumes: Basic Linear Equations and Computational Approaches
Over the past several years, a number of Gaussian plume–based computer codes have been produced. These codes describe transport, transformation, and deposition of air pollutants under a variety of atmospheric conditions. For a number of reasons, there is increasing interest in simulating wet-deposit...
Saved in:
Published in: | Journal of applied meteorology (1988) 2002-09, Vol.41 (9), p.905-918 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Over the past several years, a number of Gaussian plume–based computer codes have been produced. These codes describe transport, transformation, and deposition of air pollutants under a variety of atmospheric conditions. For a number of reasons, there is increasing interest in simulating wet-deposition processes in such codes, and several approaches have been applied to this end. Some of these approaches involve elaborate solubility and chemistry characterizations, but many of them resort to a diversity of approximate techniques. This paper presents a procedure that can be used as a practical guide to improve many of these formulations, especially for the case of pollutant gases. The approach takes the form of a set of analytical equations that correspond to five kinds of Gaussian plume formulations: standard bivariate-normal point-source plumes, line-source plumes, unrestricted instantaneous puffs, and point-source plumes and puffs that experience reflection from inversion layers aloft. These equations represent the concentration of scavenged pollutants in falling raindrops and are similar in complexity to their associated gas-phase plume equations. They are strictly linear, thus allowing superposition of wet-deposition contributions by multiple plumes. |
---|---|
ISSN: | 0894-8763 1520-0450 |
DOI: | 10.1175/1520-0450(2002)041<0905:WROPFG>2.0.CO;2 |