Loading…
Giant Density of States Enhancement Driven by a Zero-Mode Landau Level in Semimetallic Black Phosphorus under Pressure
Dirac fermion systems form a unique Landau level at the Fermi level-the so-called zero mode-whose observation itself will provide strong evidence of the presence of Dirac dispersions. Here, we report the study of semimetallic black phosphorus under pressure by ^{31}P-nuclear magnetic resonance measu...
Saved in:
Published in: | Physical review letters 2023-02, Vol.130 (7), p.076401-076401, Article 076401 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dirac fermion systems form a unique Landau level at the Fermi level-the so-called zero mode-whose observation itself will provide strong evidence of the presence of Dirac dispersions. Here, we report the study of semimetallic black phosphorus under pressure by ^{31}P-nuclear magnetic resonance measurements in a wide range of magnetic field up to 24.0 T. We have found a field-induced giant enhancement of 1/T_{1}T, where 1/T_{1} is the nuclear spin lattice relaxation rate: 1/T_{1}T at 24.0 T reaches more than 20 times larger than that at 2.0 T. The increase in 1/T_{1}T above 6.5 T is approximately proportional to the squared field, implying a linear relationship between the density of states and the field. We also found that, while 1/T_{1}T at a constant field is independent of temperature in the low-temperature region, it steeply increases with temperature above 100 K. All these phenomena are well explained by considering the effect of Landau quantization on three-dimensional Dirac fermions. The present study demonstrates that 1/T_{1} is an excellent quantity to probe the zero-mode Landau level and to identify the dimensionality of the Dirac fermion system. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.130.076401 |