Loading…
Thymol encapsulated chitosan-Aloe vera films for antimicrobial infection
Wound healing is an extremely intricate process involving various potential factors that can contribute towards delayed healing, one of them being bacterial colonization. The current research addresses this issue through the development of herbal antimicrobial films that can be stripped off easily,...
Saved in:
Published in: | International journal of biological macromolecules 2023-04, Vol.235, p.123897-123897, Article 123897 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wound healing is an extremely intricate process involving various potential factors that can contribute towards delayed healing, one of them being bacterial colonization. The current research addresses this issue through the development of herbal antimicrobial films that can be stripped off easily, formed using an essential oil component thymol, biopolymer chitosan, and herbal plant Aloe vera. In comparison to the conventionally used nanoemulsions, thymol encapsulated in chitosan-Aloe vera (CA) film exhibited high encapsulation efficiency (95.3 %) with alleviated physical stability, as established using a high zeta potential value. The pronounced loss of crystallinity, validated using X-ray diffractometry, combined with the results obtained from Infrared and Fluorescence spectroscopic analysis, confirmed the encapsulation of thymol in CA matrix through hydrophobic interactions. This encapsulation increases the spaces between biopolymer chains facilitating greater intrusion of water, conducive for preventing the possibility of bacterial infection. Antimicrobial activity was tested against various pathogenic microbes such as Bacillus, Staphylococcus, Escherichia, Pseudomonas, Klebsiella and Candida. Results showed potential antimicrobial activity in the prepared films. Release test was also run at 25 °C suggesting a two-step biphasic release mechanism. The encapsulated thymol had higher biological activity, as assessed by antioxidant DPPH assay, likely due to improved dispersibility.
[Display omitted] |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2023.123897 |