Loading…
Micromechanical properties of a laser-induced iron oxide–aluminum matrix composite coating
A laser-based technique was used to deposit Fe3O4 on A319Al, producing an Fe3O4/Al reaction composite coating. Scanning Auger microscopy indicated a reaction between oxide particles and aluminum-forming Fe–Al intermetallic compounds, Al2O3, and various intermediate reaction products. Analysis of the...
Saved in:
Published in: | Journal of materials research 2003-04, Vol.18 (4), p.833-839 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A laser-based technique was used to deposit Fe3O4 on A319Al, producing an Fe3O4/Al reaction composite coating. Scanning Auger microscopy indicated a reaction between oxide particles and aluminum-forming Fe–Al intermetallic compounds, Al2O3, and various intermediate reaction products. Analysis of the coating region, fractured in vacuo, indicated substantial toughness of the material due to extremely refined microstructure with finely distributed oxide and intermetallic particles and strong interfacial bonding between particles and the matrix. Mechanical properties of the coating were evaluated by nanoindentation techniques employing both Berkovich and cube-corner indenters. Hardness and elastic modulus values were found to be uniform at 1.24 and 76 GPa, respectively. No radial cracking was observed for either the Berkovich or cube-corner indenters. These results indicate that the laser-induced rapidly solidified composite material is tough and fracture resistant. |
---|---|
ISSN: | 0884-2914 2044-5326 |
DOI: | 10.1557/JMR.2003.0114 |