Loading…
On Cauchy conditions for asymmetric mixed convection boundary layer flows
The fundamental question of how and where does an asymmetric mixed convection boundary layer flow around a heated horizontal circular cylinder begin to develop is raised. We first transform the classical boundary layer equations by using an integral method of Karman–Pohlhausen type and obtain two co...
Saved in:
Published in: | International journal of thermal sciences 2003-06, Vol.42 (6), p.621-630 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The fundamental question of how and where does an asymmetric mixed convection boundary layer flow around a heated horizontal circular cylinder begin to develop is raised. We first transform the classical boundary layer equations by using an integral method of Karman–Pohlhausen type and obtain two coupled equations governing the evolutions of the dynamic and thermal boundary layers. Because of its global character, the implemented method allows to bypass the difficulty of downstream–upstream interactions. Cauchy conditions characterizing the starting of the boundary layers are found; they are obtained in a surprisingly simple manner for the limiting cases corresponding to Pr=1, Pr→0 and Pr→∞. Otherwise, these conditions can be found by using a prediction correction algorithm. Some numerical experiments are finally performed in order to illustrate the theory.
Le problème fondamental du démarrage d'un écoulement de convection mixte asymétrique est posé en termes d'évolution des épaisseurs des couches limites dynamique et thermique. Cette procédure permet, de part son caractère global, d'aplanir les difficultés liées aux interactions amont-aval dues à l'existence d'un écoulement de retour dans la zone de convection mixte défavorable. Les positions des points de départ des couches limites et les conditions de Cauchy correspondantes sont discutées en fonction de la valeur du nombre de Prandtl. Quelques résultats numériques sont présentés afin d'illustrer la présente théorie. |
---|---|
ISSN: | 1290-0729 1778-4166 |
DOI: | 10.1016/S1290-0729(03)00027-9 |