Loading…
Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible
Metalenses are attractive alternatives to conventional bulky refractive lenses owing to their superior light-modulating performance and sub-micrometre-scale thicknesses; however, limitations in existing fabrication techniques, including high cost, low throughput and small patterning area, have hinde...
Saved in:
Published in: | Nature materials 2023-04, Vol.22 (4), p.474-481 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Metalenses are attractive alternatives to conventional bulky refractive lenses owing to their superior light-modulating performance and sub-micrometre-scale thicknesses; however, limitations in existing fabrication techniques, including high cost, low throughput and small patterning area, have hindered their mass production. Here we demonstrate low-cost and high-throughput mass production of large-aperture visible metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography. Once a 12″ master stamp is imprinted, hundreds of centimetre-scale metalenses can be fabricated using a thinly coated high-index film to enhance light confinement, resulting in a substantial increase in conversion efficiency. As a proof of concept, an ultrathin virtual reality device created with the printed metalens demonstrates its potential towards the scalable manufacturing of metaphotonic devices.
The authors propose a method for the scalable manufacturing of metalenses using deep-ultraviolet argon fluoride immersion lithography and wafer-scale nanoimprint lithography, opening a route towards their low-cost, high-throughput mass production. |
---|---|
ISSN: | 1476-1122 1476-4660 |
DOI: | 10.1038/s41563-023-01485-5 |