Loading…

Walking slope and heavy backpack loads affect torso muscle activity and kinematics

The independent effects of sloped walking or carrying a heavy backpack on posture and torso muscle activations have been reported. While the combined effects of sloped walking and backpack loads are known to be physically demanding, how back and abdominal muscles adapt to walking on slopes with heav...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electromyography and kinesiology 2023-06, Vol.70, p.102769-102769, Article 102769
Main Authors: Sturdy, Jordan T., Rizeq, Hedaya N., Silder, Amy, Sessoms, Pinata H., Silverman, Anne K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The independent effects of sloped walking or carrying a heavy backpack on posture and torso muscle activations have been reported. While the combined effects of sloped walking and backpack loads are known to be physically demanding, how back and abdominal muscles adapt to walking on slopes with heavy load is unclear. This study quantified three-dimensional pelvis and torso kinematics and muscle activity from longissimus, iliocostalis, rectus abdominis, and external oblique during walking on 0° and ± 10° degree slopes with and without backpack loads using two different backpack configurations (hip-belt assisted and shoulder-borne). Iliocostalis activity was greater during downhill and uphill compared to level walking, but longissimus was only greater during uphill. Rectus abdominis activity was greater during downhill and uphill compared to level, while external oblique activity decreased as slopes progressed from down to up. Longissimus, but not iliocostalis, activity was reduced during both backpack configurations compared to walking with no pack. Hip-belt assisted load carriage required less rectus abdominis activity compared to using shoulder-borne only backpacks; however, external oblique was not influenced by backpack condition. Our results revealed different responses between iliocostalis and longissimus, and between rectus abdominis and external obliques, suggesting different motor control strategies between anatomical planes.
ISSN:1050-6411
1873-5711
DOI:10.1016/j.jelekin.2023.102769